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SIDEBAR 5.2: RADIATIVE FORCING BY BLACK CARBON IN THE 
ARCTIC—P. K. QUINN, A. STOHL, A. BAKLANOV, M. G. FLANNER, A. HERBER, K. KUPIAINEN, K. S. 
LAW, J. SCHMALE, S. SHARMA, V. VESTRENG, AND K. VON SALZEN

Black carbon (BC) is the most efficient atmospheric 
particulate species at absorbing visible light. Conse-
quently, it exerts a warming effect that contrasts with the 
cooling effect of purely scattering aerosol components 
such as sulfate. However, pure BC particles rarely occur 
in the atmosphere. Soon after emission, BC becomes 
mixed with other components such as sulfate and organ-
ics. BC-containing particles can have either a warming or 
a cooling effect on climate depending on their altitude and 
the albedo of the underlying surface relative to the albedo 
of the BC haze itself. The albedo of the haze depends on 
the relative amounts of all of the chemical components 
present, their mixing state, and whether they primarily 
scatter or absorb light. BC-containing aerosols, unlike 
greenhouse gases, are short-lived, with a lifetime in the 
atmosphere on the order of days to weeks. While rec-
ognizing that reductions in CO2 emissions are required 
for long-term mitigation of Arctic warming, it has been 
suggested that reducing emissions of BC could reduce 
projected global mean warming and slow the rate of 
warming in the short term in the Arctic (Shindell et al. 
2012; Bowerman et al. 2013).

Atmospheric BC concentrations in the Arctic have 
declined since the 1990s (Sharma et al. 2013), and the 
BC content of Arctic snow is now no higher than it was 
thirty years ago (Clarke and Noone 1985; Doherty et 
al. 2010), but BC-containing aerosols will likely continue 
to influence Arctic climate through several different 
forcing mechanisms. Atmospheric BC can directly warm 
the Arctic atmosphere by absorbing solar radiation that 
would otherwise have been reflected back to space or 
absorbed by the surface (far right panel in Fig. SB5.4). 
The added atmospheric heating subsequently increases 
the downward longwave radiation to the surface and de-
creases the temperature difference between the surface 
and the atmosphere, thereby warming the surface. With 
the highly reflective snow and ice surfaces typical of the 
Arctic, even a moderately absorbing aerosol can lead to a 
heating of the surface–atmosphere column. The average 
daily radiative efficiency of atmospheric BC (units of W 
g-1) in the Arctic summer is greater than in most other 
environments because of the long sunlight exposure and 
presence of highly reflective clouds, snow, and sea ice 
(e.g., Cess 1983). As summer progresses and open water 
appears within the sea ice cover, and melt ponds form 

on the ice surface, the direct forcing efficiency by atmo-
spheric BC decreases because the surface becomes less 
reflective. Similarly, it is reasonable to expect that forcing 
by atmospheric BC will become weaker as snow, sea ice, 
and glacier extent and surface albedo decrease under a 
warming climate (Flanner et al. 2009).

BC deposited to snow and ice surfaces enhances the 
absorption of solar radiation at the surface and warms 
the lower atmosphere, which can initiate snow and ice 
melt earlier in the season (left center panel in Fig. SB5.4). 
Even very low BC concentrations (ppb) of deposited 
BC have an impact because the absorptivity of BC is 
about five orders of magnitude greater than ice at visible 
wavelengths. In addition, multiple scattering in surface 
snow greatly increases the path-length of photons and 
the probability that they will encounter non-ice particles 
(Warren and Wiscombe 1980). Snow darkening drives an 
equilibrium temperature response, per unit of radiative 
forcing, several times that of CO2 (Koch et al. 2009). This 
large impact occurs because all of the energy associated 
with the forcing is deposited directly into the snow and 
ice covers, components of the Earth system responsible 
for powerful positive feedback (e.g, Robock 1983; Hansen 
and Nazarenko 2004).

Radiative forcing by BC can also result from the 
impact of aerosols on cloud distributions, lifetime, and 
microphysical properties. By increasing the number of 
cloud droplets and decreasing cloud droplet size, aerosols 
can lead to an increase in reflectivity and cloud optical 
thickness (first indirect effect) and to an increase in cloud 
lifetime and a decrease in precipitation (second indirect 
effect; e.g., Twomey 1977). Both of these changes result 
in greater reflection of solar shortwave radiation back to 
space and a cooling at the surface (right center panel in Fig. 
SB5.4). In contrast, when the cloud droplet number con-
centration of thin Arctic liquid-phase clouds is increased 
through interaction with anthropogenic aerosols, the 
clouds become more efficient at trapping and re-emitting 
longwave radiation, which results in a warming at the 
surface (Garrett and Zhao 2006; far left column in Fig. 
SB5.4). BC can also impact clouds through semi-direct 
effects associated with atmospheric heating. Depending 
on circumstances, BC-induced heating can either stabilize 
the atmosphere and increase low-level cloud formation 
(Hansen et al. 2005), inhibit cloud formation, or increase 
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the evaporation rate of clouds (e.g., Ackerman et al. 2000; 
Jacobson 2010). Simulating these indirect and semi-direct 
effects remains a challenge for global-scale models, espe-
cially in the Arctic. Both the sign and magnitude of the 
net forcing due to nonlinear interactions between BC and 
clouds in the Arctic are uncertain.

Further complicating the impact of BC on Arctic cli-
mate is that forcing exerted by BC outside of the Arctic 
can result in changes in energy transport through the at-
mosphere and oceans to the Arctic (Shindell and Faluvegi 
2009). For example, BC-heated air masses can travel from 
midlatitudes to the Arctic.

In the past few years there has been a concerted effort 
by the scientific community to quantitatively estimate the 
climate impacts of BC, both globally and within the Arctic 

(e.g., Bond et al. 2013; Quinn et al. 2008). Currently, there 
is no single appropriate environmental indicator to assess 
the Arctic climate response to changes in emissions of 
BC and co-emitted species including organic carbon and 
sulfate. Hence, only an integrated evaluation will reduce 
the large uncertainties and improve estimates of BC’s 
climate impacts. Such an evaluation requires accurate 
emission inventories of local and remote sources, long-
term monitoring and process-oriented measurements, 
and global models capable of realistic transport of BC to 
the Arctic and depositional losses en route and within 
the Arctic. In addition, models must accurately capture 
feedbacks induced by BC, including those associated 
with snow, glacier, and sea-ice loss, cloud changes, and 
dynamical changes.

Fig. SB5.4. Forcing mechanisms in the Arctic due to black carbon. ΔTs indicates the surface temperature 
response.
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Measurements made by both approaches are typically 
calibrated with standards based on WMO mole frac-
tion scales maintained at NOAA ESRL. Uncertainties 
estimated using a Monte Carlo method for the NOAA 
zonal means in Figs. 5.11a and 5.11b are 0.3–0.6 ppm 
for CO2 and 2–4 ppb for CH4 weekly averages.

Observations of atmospheric CO2 (Fig. 5.11a) aver-
aged for the Arctic observation sites show that CO2 
continued to increase in 2013 (3.2 ppm higher than 
in 2012, the same as the global increase). At present, 
trends in Arctic atmospheric CO2 due to changes in 
Arctic productivity or respiration are difficult to dis-
tinguish from midlatitude anthropogenic emissions; 

most of the increase in atmospheric CO2 in the Arctic 
is from combustion of fossil fuels at midlatitudes.

 After a period of stability from 1999 to 2006 (the 
reasons for this are not fully understood and it is 
a topic of continuing research), CH4 in the Arctic 
atmosphere began increasing in 2007 (Fig. 5.11b). In 
2013, CH4 was 5.0 ppb (preliminary estimate) higher 
than in 2012, equal to the increase in global CH4. The 
increase in global CH4 is attributed to a combination 
of increased tropical natural emissions and emissions 
from fossil fuel production, agriculture, and waste 
(Bruhwiler et al. 2014; Bergamaschi et al. 2013). Al-
though interannual variability in Arctic emissions is 
captured in the Arctic observations, large sustained 
increases in CH4 emissions from Arctic sources have 
not been observed.

f. Sea ice cover—D. Perovich, S. Gerland, S. Hendricks, W. Meier, 
M. Nicolaus, J. Richter-Menge, and M. Tschudi
1) sea ice extent

Sea ice extent is a fundamental descriptor of the 
state of the Arctic sea ice cover. Satellite-based passive 
microwave instruments have been used to determine 
sea ice extent since 1979. There are two months each 
year that are of particular interest: September, at the 
end of summer, when the sea ice reaches its annual 
minimum extent, and March, at the end of winter, 
when the ice reaches its annual maximum extent. The 
sea ice extent in March 2013 and September 2013 are 
presented in Fig. 5.12.

Based on estimates produced by the National 
Snow and Ice Data Center (NSIDC), the sea ice cover 
reached a minimum annual extent of 5.10 million 

Fig. 5.11. Weekly averages of (a) CO2 (ppm) and (b) CH4 
(ppb) for 16 high northern latitude sites (blue curves) 
with deseasonalized trends (red curves). The seasonal 
CO2 cycle reflects uptake by the terrestrial biosphere 
during the NH growing season and respiration during 
the winter months. The minimum in the CH4 seasonal 
cycle occurs during the NH summer due to solar radi-
ation-dependent photochemical destruction.

Fig. 5.12. Sea ice extent in (a) Mar and (b) Sep 2013, 
illustrating the respective monthly averages during the 
winter maximum and summer minimum extents. The 
magenta lines indicate the median ice extents during 
the period 1981–2010. (Source: NSIDC, http://nsidc 
.org/data/seaice_index.)

http://nsidc.org/data/seaice_index
http://nsidc.org/data/seaice_index
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km2 on 13 September 2013. This was 1.69 million 
km2 higher than the record minimum of 3.41 million 
km2 set in 2012 and the largest September minimum 
ice extent since 2006 (Fig. 5.13). However, the 2013 
summer minimum extent was still 1.12 million km2 
(18%) below the 1981–2010 average minimum ice ex-
tent. The March 2013 ice extent reached a maximum 
value of 15.04 million km2 (Fig. 5.13), 3% below the 
1981–2010 average. This was slightly less than the 
March 2012 value, but typical of the past decade.

The September monthly average trend is −13.7% 
decade-1 relative to the 1981–2010 average (Fig. 5.13). 
Trends are smaller during March (−2.4% decade-1) but 
are still decreasing and statistically significant. There 
was a loss of 9.69 million km2 of sea ice between the 
March and September extents. This is the smallest 
seasonal decline since 2006.

2) age of the ice

Key ice physical properties, such as surface rough-
ness, melt pond coverage, and thickness, vary ac-
cording to the age of the ice. The age of the ice can be 
determined using satellite observations and drifting 
buoy records to track ice parcels over several years 
(Tschudi et al. 2010). This method has been used to 
provide a record of ice age since 1984. The distribu-
tion of ice of different ages (Fig. 5.14) illustrates the 
extensive loss in recent years of the older ice types 
(Maslanik et al. 2011).

Although the minimum sea ice extent increased 
somewhat in 2013 compared to recent years, the 
distribution of ice age continued to favor first-year 
ice (ice that has not survived a melt season), which 

is the thinnest ice type (e.g., Maslanik et al. 2007). 
In March 1988, 58% of the ice pack was composed 
of first-year ice, an amount that increased to 78% in 
March 2013. Meanwhile, the trends continue for the 
recent loss of the oldest and thicker ice types, which 
accelerated starting in 2005 (Maslanik et al. 2011). 
For the month of March, the oldest ice (four years and 
older) decreased from 26% of the ice cover in 1988 to 
19% in 2005 and to 7% in 2013.

At the end of winter 2012/13, little multiyear ice 
was detected in much of the Beaufort Sea (Fig. 5.14d; 
Richter-Menge and Farrell 2013). There is no prec-
edent in the satellite-derived record of ice age for the 
near-absence of old ice in this region. This condition 
appears to have been due to a combination of the 
previous year’s record sea ice retreat and a lack of 
subsequent transport of multiyear ice into the Beau-
fort Sea during winter 2012/13. Negligible multiyear 
ice transport into the Beaufort Sea continued dur-
ing summer 2013, consistent with stronger cyclonic 
(counterclockwise) wind forcing during this period 
(see section 5g). Multiyear ice did not drift into Sibe-
rian Arctic waters either, which is also rare. Instead, 

Fig. 5.13. Time series of ice extent anomalies measured 
in Mar (maximum ice extent) and Sep (minimum ice 
extent). The anomaly value for each year is the differ-
ence (in %) in ice extent relative to the average values 
for the period 1981–2010. The black and red lines are 
least squares linear regression lines.

Fig. 5.14. Sea ice age in Mar (a) 1988, (b) 2011, (c) 2012, 
and (d) 2013, determined using satellite observations 
and drifting buoy records to track the movement of 
ice floes.
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multiyear ice remained confined to the region north 
of Greenland and northernmost Canada during 2013.

3) ice thickness

Another key state variable for the Arctic sea ice 
cover is ice thickness. In recent years, ice thickness 
has been estimated over limited regions by aircraft, 
e.g., the NASA Operation IceBridge (Richter-Menge 
and Farrell 2013), and over large regions by satellite. 
The CryoSat-2 satellite, operated since 2011 by the 
European Space Agency, measures ice freeboard, the 
height of ice floes above the water line. Preliminary 
analysis indicates that the CryoSat-2 freeboard esti-
mates are comparable to in situ field measurements, 
with a level of uncertainty that is comparable to other 
airborne and satellite-based observations (Ricker et 
al. 2014). Calculation of the actual sea-ice thickness 
from freeboard requires knowledge of snow depth, 
but in general higher freeboard indicates thicker sea 
ice. Therefore, freeboard maps in spring for the period 
2011–13 are a proxy for sea ice thickness at the time 
of maximum ice extent. During the three years of 
CryoSat-2 observations, the average freeboard within 
the Arctic Basin decreased by 0.04 m, from 0.23 m in 
2011 to 0.19 m in 2013 (Laxon et al. 2013). Assuming 
there were no significant changes in snow depth, the 
decline in freeboard amounts to an average sea ice 
thinning of 0.32 m, from 2.26 m in 2011 to 1.94 m in 
2013. As with the ice age maps (Fig. 5.14), CryoSat-2 
freeboard maps (Perovich et al. 2013, figure 22) indi-
cate that most of the thickest and oldest ice occurs to 
the north of Greenland and northernmost Canada, 
and is a small proportion of the total sea ice cover at 
the end of winter.

g. Ocean temperature and salinity—M.-L. Timmermans, 
I. Ashik, I. Frolov, H. K. Ha, R. Ingvaldsen, T. Kikuchi, T. W. Kim, 
R. Krishfield, H. Loeng, S. Nishino, R. Pickart, I. Polyakov, B. Rabe, 
U. Schauer, P. Schlosser, W. M. Smethie, V. Sokolov, M. Steele, 
J. Toole, W. Williams, R. Woodgate, and S. Zimmerman
1) suMMer sea surface teMperature

Recent summers with reduced sea-ice cover (see 
section 5f) have seen increased solar absorption into 
the surface Arctic Ocean, with the distribution of sea 
surface temperatures (SST) reflecting sea ice retreat 
patterns. Arctic Ocean average SSTs in August 2013 
ranged between ~0° and 4°C, with even higher SSTs 
in some marginal seas (Fig. 5.15). While most Arctic 
boundary regions displayed anomalously warm SSTs 
in August 2013, relative to the 1982–2006 August 
average (Fig. 5.15), cold anomalies were evident in 
the Chukchi and East Siberian Seas. The cooler SSTs 

in these regions are linked to later and less exten-
sive sea-ice retreat; anomalously cold August SSTs 
related to unusual sea-ice extent patterns were also 
observed in this region in 2012 (Timmermans et al. 
2013b). Anomalously warm August SSTs in the Bar-
ents and Kara Seas are related to earlier ice retreat in 
these regions and possibly also to the advection of 
anomalously warm water from the North Atlantic. 

Fig. 5.15. (a) Average Aug 2013 SST (°C) and (b) Aug 
2013 SST anomalies (°C) relative to the Aug 1982–2006 
average. Anomalies are derived from satellite data ac-
cording to Reynolds et al. (2007). The gray area shows 
the average Aug 2013 sea-ice extent according to the 
National Snow and Ice Data Center.
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Hydrographic data show surface waters in the vicinity 
of the Barents Sea Opening in September 2013 were 
about 3°C warmer than in September 2012. SSTs in 
the southern Barents Sea in September 2013 were 
as high as 11°C and up to 5°C above the 1977–2006 
average (Trofimov and Ingvaldsen 2014).

2) upper ocean salinity

Salinity in the upper several hundred meters of 
the Arctic Ocean is set by sea ice melt/growth cycles, 
influxes from the Pacific and Atlantic oceans, river 
input, net precipitation, and redistribution by wind 
forcing and mixing. The central Canada Basin is the 
freshest region of the Arctic Ocean, and the saltiest 
upper ocean is observed at the boundaries of the 
Eurasian Basin and the Barents Sea (Fig. 5.16, which 
illustrates salinity at a depth of 20 m, within the well-
mixed surface layer for most of the year). Relative to 
the 1970s, the major upper-ocean salinity differences 
in 2013 (similar to 2012; see Timmermans et al. 2013a, 
figure 24) were saltier waters in the central Eurasian 
Basin and fresher waters in the Beaufort Gyre region 
of the Canada Basin. The main differences in upper-
ocean salinity in 2013 relative to 2012 included saltier 
surface waters in the region north of Greenland and 
Ellesmere Island, Canada, and in the northern part of 
the East Siberian Sea/western Canada Basin.

3) freshwater content

Freshwater content in the Arctic Ocean has an 
important relationship to sea ice and climate; in-
creased freshwater, for example, strengthens ocean 
stratification, impeding vertical heat transport from 
deeper waters. Liquid freshwater content in the up-
per Arctic Ocean basins showed 
an increasing trend from 1992 to 
2012 of about 600 ±300 km3 yr-1, 
based on observed salinity profiles 
(Rabe et al. 2014). The maximum 
liquid freshwater content anomaly 
is centered in the Beaufort Gyre 
(Fig. 5.17). In total, during 2003–13 
the Beaufort Gyre accumulated 
more than 5000 km3 of freshwater 
(measured relative to a salinity of 
34.8), a gain of approximately 25% 
(update to Proshutinsky et al. 2009) 
compared to the 1970s (see figure 
5.24b in Timmermans et al. 2013b). 
Most of this increase occurred 
between 2004 and 2008.

In 2013, a reduction in freshwater content by about 
7% was observed relative to 2012 (cf. Timmermans et 
al. 2013b, figure 5.24c). This reduction may be attrib-
uted in part to stronger cyclonic (counterclockwise) 
wind forcing in summer 2013 (compared to previous 
years) that drove divergence of surface waters in the 
region. It is of note that trends in Beaufort Gyre heat 

Fig. 5.16. Average salinity at 20-m depth in 2013. 
Contour lines show the 500-m and 2500-m isobaths. 
Salinities are reported using the Practical Salinity 
Scale (unitless). Data are from multiple sources, in-
cluding various hydrographic expeditions by different 
countries and institutions, and ice-tethered profilers 
(http://www.whoi.edu/itp).

Fig. 5.17. Freshwater content (m, calculated relative to a reference salinity 
of 34.8) in the Beaufort Gyre of the Canada Basin based on hydrographic 
surveys in 2003, 2008, and 2013. Inset numbers at the bottom of each 
panel give total freshwater volume (×1000 km3) in the region. Black dots 
depict hydrographic station locations. Data are from the Beaufort Gyre 
Observing System (BGOS)/Joint Ocean Ice Studies (JOIS) project (http://
www.whoi.edu/beaufortgyre) and other Canada Basin expeditions.

http://www.whoi.edu/itp
http://www.whoi.edu/beaufortgyre
http://www.whoi.edu/beaufortgyre



