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APExpose_DE, an air quality 
exposure dataset for Germany 
2010–2019
Alexandre Caseiro   1,2 ✉ & Erika von Schneidemesser1,2

Exposure to poor air quality is considered a major influence on the occurrence of cardiovascular and 
respiratory diseases. Air pollution has also been linked to the severity of the effects of epidemics such 
as COVID-19 caused by the SARS-CoV-2 virus. Epidemiological studies require datasets of the long-
term exposure to air pollution. We present the APExpose_DE dataset, a long-term (2010–2019) dataset 
providing ambient air pollution metrics at yearly time resolution for NO2, NO, O3, PM10 and PM2.5 at 
the NUTS-3 spatial resolution level for Germany (corresponding to the Landkreis or Kreisfreie Stadt in 
Germany, 402 in total).

Background & Summary
Air pollution is the largest environmental risk factor for premature mortality. Exposure to air pollution has been 
clearly linked to the occurrence and severity of cardiovascular and respiratory diseases. The average European 
loses 2.2 years of life expectancy due to air pollution1,2 A number of recent studies have shown that the impact 
of air pollution on the respiratory system has an adverse influence on the effects of the COVID-19 disease, with 
particulate air pollution contributing globally to 15 percent of COVID-19 mortality3–8.

In order to study the effects of air pollution on human health, exposure datasets are needed. These datasets 
need to provide comprehensive coverage of air pollutant concentrations over a geographical area and time period. 
As is often the case, studies that investigate the relationship between air pollution and e.g. health outcomes or 
social inequalities, produce such a dataset in the context of the study9,10 These datasets are rarely published as 
stand-alone papers and often rely on model data. This makes re-use of such data more difficult. There are excep-
tions to this, such as the air pollution datasets published by Aaron van Donkelaar and co-workers which incorpo-
rate satellite data, modelling, and observational data11–13, the latter of which was then used in the Harvard study 
on the role of air pollution on COVID-19 mortality in the United States4. Furthermore, an appropriately high 
spatial resolution is often critical for such studies.

The dataset presented here was created in the context of a study investigating the role of long-term air pollu-
tion in the severity of COVID-19 outcomes for Germany. More specifically, the relationship to COVID-19 mor-
tality, but also additional morbidity endpoints, such as hospitalization and intensive care unit therapy and/or the 
necessity for mechanical ventilation, were also investigated. In this context we needed a long-term air pollution 
dataset at the county level for Germany, which we did not find available elsewhere. The air pollutants generally 
treated in epidemiological studies are particulate matter (PM2.5 and PM10, particulate matter with an aerodynamic 
diameter smaller than 2.5 μm and 10 μm, respectively), ozone (O3), and nitrogen dioxide (NO2). Therefore, in 
the above mentioned context, we created an air pollution dataset that covers 10 years (2010–2019) at the level of 
county (for Germany Landkreis and Kreisfreie Stadt), for PM2.5, PM10, O3, NO2, and NO. County level corresponds 
to the third level of the Nomenclature of Territorial Unit for Statistics (NUTS-3) spatial resolution.

While air pollution monitoring is required in the European Union, as prescribed in the Air Quality Directive14, 
the criteria used to locate monitoring stations (pollution levels, population and availability of funds) often result 
in heterogeneity in spatial coverage and representativeness15–17. Long-term air quality monitoring data is not 
evenly distributed in space, and furthermore has differing amounts of coverage depending on the air pollutant. 
At most, only close to one half of the 402 counties had a monitoring station for a given pollutant (Table 1). To 
provide comprehensive coverage, we combined observational data with model global reanalysis data from the 
Copernicus Atmospheric Monitoring Service (CAMS), and evaluated a variety of options considering the differ-
ent types of air quality monitoring data classifications (e.g., urban, rural).
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Such a dataset has a high potential for re-use in different types of health impact assessments, investigation of 
social inequalities, among other studies. There is also an intention to expand this dataset to provide further cov-
erage for Europe, as well as to refine the use of the CAMS data (e.g. by testing the regional reanalysis besides the 
global reanalysis, among other possible improvements).

Methods
In this study, we consider 402 NUTS-3 units for Germany. This reflects the status as of up to November 1, 2016, 
when the two Landkreise Göttingen and Osterode am Harz merged. The sources used for the production of the 
dataset were Airbase, from the European Environmental Agency18 and the CAMS global reanalysis EAC419.

Airbase.  All the data (hourly concentrations of O3, NO, NO2, PM2.5, PM10) from air quality monitoring sta-
tions located in Germany were accessed between July 11, 2020 and July 20, 2020. Owing to availability, data for 
the years 2010–2012 were obtained from Airbase-v8, whereas for the years 2012–2018 the E1a dataset was used 
and for 2019 the E2a dataset was used. Any of the Airbase data used that is not yet ratified, has been flagged, to 
facilitate avoidance of unratified data if necessary. Airbase classifies the stations based on their type and their sit-
ing (called Area in the metadata). Because the focus of the present work is on the long term exposure, the stations 
of the types “Traffic” and “Industrial” were left out for being considered unrepresentative and those of the type 
“Background” were included. The background stations thus considered are classified as: rural, rural-nearcity, 
rural-regional, rural-remote, suburban and urban for Airbase E1a and E2a, and rural, suburban and urban for 
Airbase-v8.

The following metrics were calculated for each year and for each station where measurements of the pollutant 
were available and covered at least 80% of hours of the year:

•	 NO2 annual mean concentration
•	 number of hours of the year which have a NO2 concentration over 200 μg/m3

•	 NO annual mean concentration
•	 PM10 annual mean concentration
•	 number of days of the year which have a daily average PM10 concentration over 50 μg/m3

•	 PM2.5 annual mean concentration
•	 O3 annual mean concentration
•	 number of days of the year which have a daily average O3 concentration over 120 μg/m3

•	 annual mean of the daily O3 maximum concentration
•	 maximum daily 1-h average O3 concentration over the entire year
•	 maximum daily 8-h average O3 concentration over the entire year.

Each station was geo-located within, and each computed yearly value associated to, a NUTS-3 unit. Within 
each NUTS-3 unit and for each metric, the yearly values per station were averaged in three ways, giving prefer-
ence, though not exclusiveness, to certain types of stations. Each averaging strategy represents a different scenario:

average averaging the yearly values from all the stations within the NUTS-3 unit;
urban averaging of the yearly values from stations located at the most urban location types. The location types 

are, in order of preference: urban, suburban, rural-near city, rural-regional and rural;
remote averaging of the yearly values from stations located at the most remote location types. The location 

types are, in order of preference: rural, rural-regional, rural-near city, suburban and urban.
The methodology described in the previous section produces data for the NUTS-3 units and the years where 

monitoring data for a given pollutant is available (e.g. Figure 1 for NO2 in 2018). Table 1 shows the number of 
NUTS-3 units covered by data from Airbase. The coverage is always below half of the total number of NUTS-3 
units for Germany (maximum of 197 out of 402).

In order to fill any NUTS-3 units missing observational data, we considered three options: (1) use the regional 
(relative to the Bundesland, or NUTS-2) average, (2) use the nearest neighbour and (3) use the CAMS EAC4 
global reanalysis20, (see next section) after scaling.

Gap filling based on regional averages produced spatial uniformity over large areas (the Bundesland or 
NUTS-2 units), regardless of the nature of the NUTS-3. Using the value from the nearest neighbour overcomes 
the main drawback of the Bundesland approach, but produces artifacts in the form of pairs of NUTS-3 units with 
different typology (e.g. urban and rural) but equal exposure. Such happens mainly close to large cities: e.g. a rural 
NUTS-3 unit without any monitoring station adjacent to a large city, that has monitoring stations, ends up, under 
this strategy, with the same exposure value as the large city.

Pollutant minimum coverage maximum coverage

NO2 94 197

NO 121 194

PM10 130 188

PM2:5 60 110

O3 121 197

Table 1.  Yearly NUTS-3 coverage (of a total of 402) by the monitoring network.
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CAMS.  Due to those limitations we opted to explore the use of CAMS global reanalysis data to do the gap 
filling.

The CAMS reanalysis was checked for specific regional bias over Germany. The main biases impacting the 
present dataset for the latitudinal belt 40–50° N in Europe of the product are a ±15% bias for tropospheric ozone, 
with a seasonal cycle, and an underestimation of wintertime NO2 columnar concentrations over part of Europe21. 
We estimate these biases to be either acceptable or compensated, at least partly, by the scaling procedure used (see 
below). The fields over Germany and for the study period were accessed on September 14, 2020 from the CAMS 
Atmosphere Data Store.

The procedure followed to compute the CAMS-based metrics is outlined in Fig. 2. Each metric with a time 
resolution equal to or longer than one day was computed for each cell, after averaging the 3-hourly output time-
step to daily values. Those metrics were: NO2 annual mean concentration, NO annual mean concentration, PM10 
annual mean concentration, number of days of the year which have a daily average PM10 concentration over 50 μg 
m−3, PM2.5 annual mean concentration, O3 annual mean concentration, number of days of the year which have a 
daily average O3 concentration over 120 μg m−3. 

The resulting rasters (e.g. Figure 3 for the NO2 2018 yearly average concentration) were clipped (area weighted 
mean) to each NUTS-3 unit area after upscaling the spatial resolution from 0.75° to 0.01° (each smaller cell hav-
ing the same value as its parent, larger, cell), resulting in verctorized metrics (one value for each NUTS-3 unit, 
each metric and each year). For each metric and under each scenario a scaling function between the vectorized 
CAMS values and the respective Airbase-based values was derived. Figure 4 shows the scaling function used to 
produce, for the NUTS-3 units where monitoring data was not available with satisfactory temporal coverage, 
CAMS-derived PM2.5 from the clipped rasters and the monitoring-based NUTS-3 annual average.

The scaling function was then used to produce CAMS-derived values for the NUTS-3 units and the years 
where no monitoring data is available or is available with insufficient temporal coverage (Fig. 2).

Despite the considerable amount of scatter between the CAMS-derived data and the monitoring-derived data 
(e.g. Fig. 4 for PM2.5), the approach using CAMS for gap filling overcomes the limitations that arose when using 
the nearest-neighbour or the Bundesland approaches.

For each scenario, a linear relationship between the metrics with a time resolution shorter than one day 
and a metric of the same pollutant with a time resolution equal or larger than one day was derived from the 
Airbase-based values and used with the CAMS-derived values to produce CAMS-based data for those metrics. 
The number of hours of the year which have a NO2 concentration over 200 μg m−3 was therefore computed from 
the NO2 annual mean concentration. The annual mean of the daily O3 maximum concentration, the maximum 
daily 1-h average O3 concentration over the entire year and the maximum daily 8-h average O3 concentration over 
the entire year were computed from the O3 annual mean concentration. An example of such a scaling function is 
shown in Fig. 5.

Data Records
As a final step, the Airbase and CAMS derived data are combined to produce the APExpose_DE dataset. As an 
example, Fig. 6 shows the decadal average of the NO2 yearly averages.

The APExpose_DE dataset is available in the form of an ASCII file: APExpose_DE__2010–2019.csv22. Each 
record (each line in the file) corresponds to a NUTS-3 unit (identified by its name and its code), and a scenario, 

Fig. 1  NO2 estimated yearly concentration (μg m−3) for the average scenario at the NUTS-3 level for 2018.
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Fig. 2  Flowchart for the CAMS data: from the CAMS rasters to the annual metrics for the NUTS-3 units which 
do not have measurements (or do not have measurements with sufficient spatial coverage) on a given year. The 
procedure is used for the following metrics: NO2 annual mean concentration, NO annual mean concentration, 
PM10 annual mean concentration, number of days of the year which have a daily average PM10 concentration 
over 50 μg m−3, PM2.5 annual mean concentration, O3 annual mean concentration, number of days of the year 
which have a daily average O3 concentration over 120 μg m−3.

Fig. 3  NO2 yearly (2018) average concentration (μg m−3) from the CAMS EAC4 global reanalysis.
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for a given year. There are 402 NUTS-3 units in Germany and 3 scenarios were developed, the total number of 
records in the dataset is 1206 per year, or 12060 for the entire study period. Each record includes a numeric value 
for each metric considered.

The ratification status of the Airbase data used for each NUTS-3, year, scenario and metric is given in the file 
APExpose_DE__2010–2019__Ratified.csv. The station types used for each NUTS-3, year, scenario and metric are 
listed in the file APExpose_DE__2010–2019__StationTypes.csv. These two metadata files have the same structure 
as the main file.

While we plan to expand the dataset to cover further European countries, this was beyond the current scope of 
this study. As updates or expansions to the dataset are carried out, these will be noted in the open access dataset.
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Fig. 4  An example of a relationship between an Airbase-derived metric and a CAMS-derived metric (shown 
here PM2.5 annual average) for the NUTS-3 units where monitoring data was available with satisfactory 
temporal coverage. The linear scaling function thus computed (solid line in the plot) is used to produce the 
CAMS-derived metrics for the NUTS-3 units where monitoring data was not available with satisfactory 
temporal coverage.
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Fig. 5  Relationship between the monitoring-based O3 daily maximum annual mean and the monitoring-based 
O3 annual mean for the average scenario. The linear function (solid line in the plot) will be used to derive the 
CAMS-based O3 daily maximum annual mean for the NUTS-3 units where monitoring data was not available 
with satisfactory temporal coverage.
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Technical Validation
The air quality data used to generate this dataset goes through quality assurance and quality control before being 
made officially available. In addition, we only used data from sites where 80 percent or more of the hourly data 
was available, so as to not introduce any seasonal or other bias.

Three different averaging options, corresponding to three scenarios (average, remote and urban), were evalu-
ated for determining the concentration based on monitoring data for those NUTS-3 units where data was availa-
ble. The comparison of these options showed that while differences did result, they were minor: the 95th quantile 
of the relative difference between the rural or the urban scenario relative to the average scenario was 7.6% and 
6.5%, respectively. The different options/scenarios are furthermore provided in the dataset and can be further 
evaluated and selected based on the use case where they are to be implemented.

Usage Notes
The ASCII format of the provided dataset enables a simple access and workup. The NUTS-3 code, provided for 
each record, enables linking the dataset to other, possibly vectorized, datasets at the NUTS-3 or coarser level.

Code availability
The code used to generate the dataset can be obtained under the same doi22.
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