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Methods: Additional details 

 The MERRA2-GMI output is available at a resolution of 0.5° ´ 0.625°.  The GMI 
chemical mechanism includes 122 species, 321 thermal reactions, and 81 photolysis reactions.  
GMI calculates photolysis rates using an updated version of Fast-JX (Wild et al., 2000; Bian and 
Prather, 2002).  CO is oxidized by OH and methane oxidation occurs by reactions with OH, 
O(1D), and Cl.  The monthly and interannually varying emissions of reactive gases for 
MERRA2-GMI are derived from various sources, including MACCity for fossil fuel and biofuel 
emissions (Granier et al., 2011), GFED4 for biomass burning (van der Werf et al., 2017), and 
internally calculated, meteorology-dependent, terrestrial, biogenic NMVOCs including isoprene, 
propene, and CO from methanol and monoterpene oxidation (Guenther et al., 1999, 2000).  
Emissions of CH4 are not explicitly simulated in MERRA2-GMI; rather, spatiotemporally 
varying surface-layer boundary conditions are prescribed.   
 For the chemical pump surface correction, we do not subtract fossil CH4 emissions, since 
the baseline FFCO2 emissions do not include fugitive CH4 emissions and CH4 is not a significant 
product of fossil fuel combustion.  Unlike Nassar et al. (2010), we implement a correction for 
biomass and biofuel burning (see Table 1) since our baseline GFED emissions include all carbon 
species, not just CO2.  For that correction, we apply a total non-CO2 emission factor from GFED 
averaged over ecosystem types, 0.10, to the total biomass and biofuel burning emissions.  For 
biospheric CH4, we adopt the termite and interannually varying wetland and rice paddy sources 
from the TransCom-CH4 study (Patra et al., 2011).  Unlike previous studies, we omitted 
ruminant and landfill CH4 sources, totaling ~0.1 Pg C yr-1, primarily for practical reasons. 
 Note that for this surface correction, we subtract for simplicity the entire amount of 
reduced carbon emissions rather than just the portion that is eventually oxidized to CO; in 
contrast, Suntharalingam et al. (2005), for example, used equivalent CO emissions corresponding 
to NMVOCs with yields ranging from 0.2 to 1.  To compensate for the resulting imbalance 
between chemical CO2 production and surface correction, we apply simple adjustments to the 
inversion flux results after the fact; specifically, we subtract amounts from the regional posterior 
fluxes that are proportional to the total surface correction in each region (thus affecting land 
regions mostly) and that sum up to the global imbalance.  The adjustments are in any case 
relatively small, as the global imbalance is only -0.11 Pg C yr-1 (Table 1). 



 

2 
 

 Possible shortcomings of the MERRA2-GMI simulation that could affect our prescribed 
CO loss rates and surface correction include a low bias in northern hemisphere CO relative to 
observations (Strode et al, 2015; Strode et al., 2016) that is also found in many other global 
models (e.g. Naik et al., 2013), an excessive Northern Hemisphere/Southern Hemisphere ratio of 
OH abundance relative to observation-based estimates—possibly causally connected to the CO 
bias, with a ratio of 1.26 (for 2007) compared to values of 0.85-0.98 (Naik et al 2013; Patra et al 
2014), and emissions of biogenic isoprene that are likely too high compared to that of, e.g., 
Guenther et al (1999, 2000).  But the objective of our study was to assess possible impacts to 
CO2 flux inversions rather than providing the most accurate quantitative results. 
 

Results: Analysis of posterior fit to observations 

 We examine the posterior fit of the inversions to observations to assess whether that 
could provide an objective rationale for accounting for bunker emissions and the chemical pump 
in CO2 inversions.  One measure of the goodness of fit to assimilated observations is the value of 
the cost function that is minimized in a Bayesian inversion (defined in Eq. 2 of Wang et al., 
2018).  Prior and posterior values of the cost function are shown for different inversions in Table 
S1.  Part of the reason the prior values are large is that the terrestrial biosphere is assumed to be 
near neutral while in reality it is thought to generally be a net CO2 sink; the addition of bunker 
emissions further increases the global budget discrepancy and thus the "cost."  Although the 
prior values of the cost function vary substantially among the different cases (with ODIAC land-
based emissions, ODIAC land-based and bunker emissions, and ODIAC and chemical pump), 
the posterior fit differs little among the cases for either the in situ or GOSAT inversions.  
Interestingly, there are somewhat larger differences in the posterior cost function values between 
the CDIAC- and ODIAC-based inversions, with the latter exhibiting tighter fits to the 
observations (Table S1).   
 We also evaluate the inversions against independent data as well as the assimilated data.  
In one analysis, we evaluate the in situ inversion against the GOSAT data as well as the in situ 
data, and vice versa.  Histograms of model minus observation values exhibit only slight 
differences among different cases—CDIAC, ODIAC land, ODIAC with bunkers, and ODIAC 
with chemical pump (not shown).  In another analysis, we consider biweekly aircraft 
measurements of CO2 vertical profiles from near-surface to 4.4 km over four sites across the 
Amazon (Gatti et al., 2014, 2016), which are presumably sensitive to 3-D chemical CO2 
production and the biospheric surface corrections (Fig. S1a). Although there are sizable 
differences in the prior agreement with the observations with and without the chemical pump, the 
posterior agreement for the GOSAT inversions is similar overall, as indicated by model – 
observation histograms (Fig. S2).  Individual model profiles also exhibit slight differences in 
general, with no clear seasonal patterns, e.g., dry vs. wet season (not shown).  The in situ 
inversion, on the other hand, appears to exhibit a closer fit to the observations when the chemical 
pump is included (Fig. S2).  However, given that the in situ inversion is severely under-



 

3 
 

constrained in the Amazon (Wang et al., 2018), the results here probably reflect an influence 
from the prior, which exhibits a closer fit to the observations when the chemical pump is 
included.   
 In summary, although accounting for international bunkers and the chemical pump 
changes the prior atmospheric CO2 distributions, the inversion adjustments appear to be able to 
produce a similar fit to various observations, except in regions where the inversion is under-
constrained.  The posterior fluxes differ for the different cases though. 
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Table S1.  Normalized Cost Function Values for Inversions. 
Inversion A priori A posteriori 
In situ   
  With CDIAC 112.4 4.0 
  With ODIAC (land) 124.407 3.870 
  With ODIAC + 3D bunkers 139.863 3.873 
  With ODIAC + 3D bunkers + 3D chem 135.072 3.867 
GOSAT   
  With CDIAC 2.2 0.8 
  With ODIAC (land) 2.372 0.778 
  With ODIAC + 3D bunkers 2.659 0.778 
  With ODIAC + 3D bunkers + 3D chem 2.551 0.777 
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Figure S1.  Locations of a) in situ observation sites and b) GOSAT XCO2 observations used in 
the inversions.  Also shown in a) are the 108 flux regions.  Flask and continuous measurement 
sites in a) are represented by different symbols, and sites used in inversions and in their 
evaluation are represented by different colors.  Observations in b) correspond to the ACOS B3.4 
retrieval, are filtered and averaged over each hour and 2° x 2.5° PCTM model grid column, and 
are shown for June 2009-May 2010.  Adapted from Wang et al. (2018) CC BY 4.0.  

a) 

b) 
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Figure S2.  Comparison of model, without and with the chemical pump (left and right panels, 
respectively) and Amazon aircraft observations over the period of overlap, Jan.-Sep. 2010.  Top 
panels show model-observation difference histograms for the in situ inversions and bottom 
panels show results for the GOSAT inversions.  Mean differences and standard deviations are 
indicated in the panels. 
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Figure S3.  Results for inversions using in situ and GOSAT data with and without the chemical 
pump and using surface corrections that are more similar to those of previous studies.  Note that 
this set of inversions is based on CDIAC FFCO2 emissions and does not include international 
bunkers.  Shown are twelve-month (June 2009-May 2010) mean NEP (× -1), fire, and ocean 
carbon fluxes aggregated over large regions that are defined as in TC3 and in Wang et al. (2018).  
Error bars represent 1σ uncertainties.  


