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[1] The potential effect on surface water pH of emissions of
SOX and NOX from global ship routes is assessed. The
results indicate that regional pH reductions of the same order
of magnitude as the CO2-driven acidification can occur in
heavily trafficked waters. These findings have important
consequences for ocean chemistry, since the sulfuric and
nitric acids formed are strong acids in contrast to the
weak carbonic acid formed by dissolution of CO2. Our
results also provide background for discussion of expanded
controls to mitigate acidification due to these shipping
emissions. Citation: Hassellöv, I.-M., D. R. Turner, A. Lauer, and
J. J. Corbett (2013), Shipping contributes to ocean acidification,
Geophys. Res. Lett., 40, 2731–2736, doi:10.1002/grl.50521.

1. Introduction

1.1. Ocean Acidification

[2] Rising concentration of CO2 in the atmosphere results in
a slow acidification of the surface ocean, also known as “the
other CO2 problem” [Doney et al., 2009]. Anthropogenic
acidification from emissions of sulfur and nitrogen oxides
(SOX, NOX) has been understood in terms of acidification
and eutrophication of land and freshwater ecosystems
[Greaver et al., 2012] and in terms of atmospheric aerosol
effects on regional and global climate, but deposition also
occurs over ocean surface water in the form of sulfuric and
nitric acids [Brydges and Wilson, 1990; Dhondt et al., 1994;
Kaufman and Chou, 1993; von Feilitzen and Lugner, 1910].

1.2. Shipping as a Source of Acidification

[3] Since the late 1990s [Corbett and Fischbeck, 1997],
international shipping has been recognized as a significant
contributor of SOX and NOX to the atmosphere on local,
regional, and global scales. Although identified as a limited
contributor to coastal acidification [Capaldo et al., 1999;
Endresen et al., 2003], the acidifying effects on the marine
environment have generally been considered negligible due
to the inherent buffering capacity of seawater [Doney et al.,
2007; Hunter et al., 2011]. One reason for this perception

is that proximal acidification impacts attributable to interna-
tional shipping have not heretofore been considered explic-
itly with adequate spatial and temporal resolution.
[4] Sulfur oxides (SOX) are produced during combustion of

sulfur-containing fuels, and nitrogen oxides (NOX) form
primarily from nitrogen in the air during high-temperature/
high-pressure combustion. While NOX formation depends
mainly on the combustion temperature, the amount of SOX

produced is directly related to the sulfur content of the fuel,
recently subject to international regulation through the
establishment of Emission Control Areas (ECA) (Table 1).
Table 2 shows the timetable for increasingly strict control of
the maximum sulfur content allowed in fuel [International
Maritime Organization (IMO), 1992]. For comparison, the
corresponding limit for road transport in the European Union
(EU) is 10 ppm (0.001%) as from January 2011 [European
Union (EU), 2009]. Presently, two alternatives can meet the
ECA regulations: (a) switch to much more expensive low
sulfur fuel or (b) use abatement technology that removes the
SOX from the exhausts. One promising technique is seawater
scrubbing where the natural high solubility of SOX in seawater
and the natural high buffering capacity of seawater are utilized
to eliminate the emission of acidifying SOX to the atmosphere
[An and Nishida, 2003; Andreasen and Mayer, 2007; Wang
et al., 2007].
[5] Recent studies have begun to focus on the potential

contribution of total anthropogenic SOX, NOX, and ammonia
to ocean acidification, assuming that deposited ammonia is
also oxidized to nitric acid. A global modeling study con-
cluded that the contribution of these gases is no more than
a few percent [Doney et al., 2007] but noted that the effects
may be larger in coastal waters. A regional modeling study
[Hunter et al., 2011] concluded that input of sulfur and nitro-
gen gases would lead to reduced uptake of CO2 and that the
combined effect on pH would be small. However, both these
studies considered relatively large sea areas on an annual
basis and focused on the total anthropogenic gas production.
In order to examine the effects of shipping-based emissions
in more detail, we have modeled the resulting acidification
on a 1� � 1� grid on a monthly basis.
[6] The aim of this work is to identify those oceanic areas

where shipping-derived acidification can make a significant
contribution to the total anthropogenic acidification. At the
current state of knowledge, it is not possible to separate the
contributions of CO2 and strong acids to the observed acidifi-
cation of the ocean. We therefore explicitly add ship-derived
acids to the observed state of the surface ocean in order to pro-
vide a time-resolved and geospatial comparative estimate of
expected contributions from shipping to ocean acidification.

2. Methods

[7] The input data are for the years 2000 and 2002, before
the establishment of ECAs (Table 1). We have used monthly
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global surface water distributions, mapped on a 1� � 1� grid,
of salinity [Conkright et al., 2002], temperature [Conkright
et al., 2002], mixed layer depth [Monterey and Levitus,
1997], alkalinity [Lee et al., 2006], and carbon dioxide partial
pressure for the year 2000 [Takahashi et al., 2009]. Monthly
SOX deposition rates resulting from shipping were obtained
from model simulations with the global aerosol-climate model
EMAC/MADE [Jöckel et al., 2006; Lauer et al., 2007; Lauer
et al., 2009]. EMAC/MADE is a general circulation model
that includes a detailed representation of aerosol microphysi-
cal processes, tropospheric NOX-HOX-CH4-CO-O3 chemistry
and the sulfur cycle, as well as transport and removal (dry
and wet deposition) of aerosol particles and trace gases. The
aerosols are interactively coupled to the model’s chemistry,
cloud microphysics, and the radiation scheme. The impact of
shipping on aerosols and the deposition rates of SOX and
NOX is estimated by calculating differences between model
simulations with and without ship emissions. The ship emis-
sion inventory used provides monthly mean emissions repre-
sentative for the year 2002 [Wang et al., 2008]. The annual
emission totals from shipping are 9.2 Tg for SO2, 0.35 Tg
for primary SO4, and 16.4 Tg(NO2) for NOX.
[8] The additional acidification due to nitrogen gases was

assumed to be proportional to the SOX-derived acidification:
for the gross emissions (Figure 1), the acidification due to
NOX and NH4 was taken to be twice that of SOX [Hunter
et al., 2011], while for the shipping-based emissions, the
acidification due to NOX was taken to be equal to that of
SOX [McLaren et al., 2012]. The added protons are distrib-
uted evenly over the grid square down to the mixed layer
depth, and the change in pH calculated. The pH change was
calculated assuming that the total inorganic carbon remained
constant, while the alkalinity was reduced by the added
protons. Calculations were carried out over a period of 12
consecutive months beginning in January. The alkalinity
reduction from January was carried over to February but
reduced by dilution if the mixed layer depth deepened. This
procedure was continued throughout the 12 month period
in order to estimate the cumulative effects of acid deposition.

3. Results

[9] The largest effects of SOX and NOX input from ship-
ping are seen in parts of the northern hemisphere, where
~85% of all shipping emissions [Corbett et al., 1999] coin-
cide with seasonal stratification thus concentrating the acid
emissions within a relatively shallow surface mixed layer.
Figure 1 shows the calculated pH change for January and
August: the significant coastal acidification shown for
August then decreases during the autumn as mixing of sur-
face and deeper waters occurs. Figure 2 shows corresponding
calculations for the shipping-derived input of SOX and NOX.
Several well-trafficked shipping routes are clearly visible in
the August distribution, and seasonal coastal acidification in

the range 0.0015–0.002 pH is observed. This is of the same
order of magnitude as the annual surface water acidification
in the open ocean due to increased atmospheric CO2 [Bates
and Peters, 2007; Byrne et al., 2010; Dore et al., 2009].
Figure 3 shows the August distributions in the North
Atlantic and the North Pacific, where the largest pH effects
are observed. The lack of data close to the coasts is due to
the limitations of the global oceanographic atlases used
(represented in white boundaries near continents). We can
expect that pH changes close to the coasts may well be larger
than those calculated in more open waters, particularly due to
heavy shipping traffic in the vicinity of major ports, even if
the contribution from continental runoff may increase rela-
tive to shipping.

4. Discussion

[10] The acidification contribution from international ship-
ping is spatially nonuniform, but important for the global un-
derstanding of the pH changes in the surface ocean. This
study suggests opportunities for improved understanding of
the net contribution of human activity on ocean acidification:
(i) to reduce uncertainties, (ii) to enhance comparability with
regional models, and (iii) to properly include both natural
changes (e.g., seasonality) and changes in shipping contribu-
tions (e.g., resulting from policy measures to take place over
this decade).

4.1. Modeling Assumptions

[11] The modeling approach used here makes a number of
implicit assumptions:
[12] 1. that the acid thus deposited is uniformly distributed

over a mixed layer depth: this is reasonable for a monthly
time step, particularly in the shallower mixed layers where
significant acidification is calculated;
[13] 2. that this acid is retained within the grid square dur-

ing a 12 month period: inclusion of horizontal advection pro-
cesses could result in somewhat less focused hot spot areas;
[14] 3. that there is no re-equilibration of CO2 with the

atmosphere following the acidification: in the areas undersat-
urated in CO2 (Figure 4, the majority of the most acidified
grid squares), the effect would be to minimize the uptake of

Table 1. Establishment of Emission Control Areas (ECAs)

Area Emission Control Adopted Date of Entry into Force In Effect From

Baltic Sea SOX 26 Sep 1997 19 May 2005 19 May 2006
North Sea SOX 22 Jul 2005 22 Nov 2006 22 Nov 2007
North American SOX, NOX, PM

a 26 Mar 2010 1 Aug 2011 1 Aug 2012
United States Caribbean Sea SOX, NOX, PM

a 26 Jul 2011 1 Jan 2013 1 Jan 2014

aParticulate matter.

Table 2. Present and Upcoming Fuel Oil Sulfur Limitsa Inside and
Outside ECAs

Outside an ECA Inside an ECA

4.50% m/m prior to 1 Jan 2012 1.50% m/m prior to 1 Jul 2010
3.50% m/m on and after 1 Jan 2012 1.00% m/m on and after 1 Jul 2010
0.50% m/m on and after 1 Jan 2020b 0.10% m/m on and after 1 Jan 2015

aexpressed as % sulfur by weight in the fuel.
bdepending on the outcome of a review, to be concluded in 2018, as to the

availability of the required fuel oil, this date could be deferred to 1
January 2025.
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CO2 in these grid squares, thus decreasing the effect of CO2-
driven acidification; in other areas, the acidification would
result in outgassing of CO2 as suggested in previous modeling
exercises [Doney et al., 2007; Hunter et al., 2011].
[15] Since our alkalinity and pCO2 input data are based on

observations, they include the cumulative effects of previous
acidification, which will be particularly significant in the hot
spot areas. Taking these assumptions into account, we
conclude that the location of the most acidified hot spot
areas and the order of magnitude of the calculated acidifica-
tion are sufficiently accurate to support our conclusions and
recommendations.

4.2. Comparison With Previous Studies

[16] Two previous studies have calculated the acidification
due to SOX, NOX, and NH4: both studies have used the total
anthropogenic emissions as source functions, so that they
should be compared with Figure 1 rather than Figures 2 and
3, which use only the shipping-derived emissions.
[17] Doney et al. [2007], in a global model, calculated a

maximum annual acidification of ca. 0.0004 pH. While our
estimates of annual acidification show a strong spatial depen-
dence (Figure 5), the global mean (0.00037) and median
(0.00018) values are consistent with Doney’s estimate.
[18] Hunter et al. [2011], in three regional models, calcu-

lated annual acidifications of 0.0014, 0.00046, and 0.0008
for the North Sea, Baltic Sea and South China Sea, respec-
tively. Hunter et al. made the assumption that the surface

water pCO2 was in equilibrium with the atmosphere before
acidification and then calculated the effect of CO2 loss due
to the acidification. Since we have used pCO2 values based
on observations, most of which are far from equilibrium with
the atmosphere, we cannot make a meaningful comparison
with the unrealistic “equilibrated values” of Hunter et al.
Furthermore, our model lacks data for the Baltic and South
China Seas but includes partial coverage of the North Sea
(Figure 3). Our estimates give mean and median annual
North Sea acidification of 0.0024 and 0.0018 pH, which,
given the difference in coverage, compares well with
Hunter et al.’s unequilibrated estimate of 0.0014 pH.

4.3. Significance

[19] The calculated near-coastal seasonal acidification of
0.0015–0.002 pH is without a doubt significant: deposition
of shipping emissions not only matches the CO2-driven acid-
ification but also reduces the alkalinity of the water. Future
studies of the impact of CO2 on acidification in these areas
can no longer ignore the spatial and seasonal components
of strong acid acidification attributable to heavy shipping
traffic. As the potential impact peak coincides with the
seasonal activity peak of biological processes, such as plank-
ton spring bloom or hatching of fish, potential effects on the
ecosystem may spread on both temporal and spatial scales
[Halpern et al., 2008; Heath, 2008].
[20] The ECAs established by the IMO regulate sulfur

emissions in some areas of the North Atlantic and North
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Figure 1. Calculated surface water pH changes arising from total inputs of SOX, NOX, and NH4. Calculations begin with the
month of January. It is assumed that these inputs are fully oxidized to sulfuric and nitric acids, respectively, within the
monthly time step.
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Figure 3. Calculated North Pacific and North Atlantic surface water pH changes for August arising from shipping-derived
inputs of SOX and NOX. Calculations begin with the month of January.
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Figure 2. Calculated surface water pH changes arising from shipping-derived inputs of SOX and NOX. Calculations begin
with the month of January.
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Pacific with greatest potential impact (Table 1 and observable
in the figures). Future work in these areas should focus on
regional studies in these hot spot areas. These regional
studies should include oceanographic models in order to
investigate the accumulation of acidity on a multiyear basis.
Such models will provide a basis for the assessment of the
effects of future emission control regimes in these areas.
Other areas identified in this work include the Pacific
coastal regions around Asian nations, Mexican and Central
American coastlines (e.g., shipping routes to the Panama
Canal), and parts of the Indian Ocean (e.g., shipping routes
connecting Indonesia and the Suez Canal).
[21] Some northern hemisphere hot spots are already sub-

ject to ECA regulation (Tables 1 and 2). In these areas,
large-scale implementation of seawater scrubbing for sulfur
abatement on board, if not accompanied by neutralization
with a base other than seawater before discharge, simply acts
as an efficient mechanism for transferring the acid to the sur-
face water. This would result in a focused shipping-derived
acidification in regions where biodiversity or commercial

aquaculture (e.g., shellfisheries) may be most negatively
impacted. Future work using more highly resolved regional
models could examine shipping sulfur impacts where our
study could not discern among land-based impacts to coastal
ocean areas, such as the Mediterranean Sea, the Indo-Asian-
Australian coastlines, the US-Mexico Gulf, and the
Caribbean seas. Policy-focused analyses should also con-
sider the current, pending, and potential implications of
policy measures and business choices that lower marine fuel
sulfur content (Table 2).
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