

Originally published as:

Negassa, W., Price, R. F., Basir, A., Snapp, S. S., Kravchenko, A. (2015): Cover crop and tillage systems effect on soil CO2 and N2O fluxes in contrasting topographic positions. *- Soil and Tillage Research*, *154*, p. 64-74. DOI: <u>http://doi.org/10.1016/j.still.2015.06.015</u>

1	Highlights
2	 Topography influenced cover crop performance, CO₂ and N₂O emissions.
3	• The performance of rye cover was poorer at the depressions than at the slopes and
4	summits
5	• The amounts of CO ₂ and N ₂ O emissions were higher in the depressions than in the slopes
6	and summits.
7	• Sensitivity of CO ₂ emissions to soil temperature was higher in cover crop than no cover
8	crop treatments.
9	• CO ₂ emissions from the ridge tillage were higher than from the chisel tillage.
10	 We observed no significant effects of cover crop and tillage treatments on N₂O
11	emissions.
12	
13	Title: Cover crop and tillage systems effect on soil CO_2 and N_2O fluxes in contrasting
14	topographic positions
15	Wakene Negassa ^{a, 1,} , Richard F. Price ^a , Abdul Basir ^b , Sieglinde S. Snapp ^a , and Alexandra
16	Kravchenko ^{a*}
17	^a Plant, Soil and Microbial Sciences, Michigan State University, Plant & Soil Sciences Building,
18	1066 Bogue St., East Lansing, MI 48824
19	^b Department of Agronomy, University of Swabi, KP, Pakistan

Potsdam, Germany. *Corresponding author: Alexandra Kravchenko, email: <u>kravche1@msu.edu</u>

¹Present address: Institute for Advanced Sustainability Studies, Berliner St. 130, 14467,

20 Abstract

Soils are important sources of CO₂ and N₂O emissions to the atmosphere. Introducing 21 cover crop and conservation tillage are among the strategies to improve soil organic carbon 22 23 (SOC) and nitrogen (N) sequestration potentials with potential to reduce the amounts of greenhouse gases (GHG) emitted from soil. The objectives of the study were to evaluate CO₂ and 24 25 N_2O emissions in rye cover crop and tillage system treatments in contrasting topographical positions. Two replicated field experiments were established in 2011 at Kellogg Biological 26 Station and Mason Research Farm sites, located in Southwest and Central Michigan, 27 28 respectively. At each site, two replications of three contrasting topographical positions, namely depression, slope and summit were used. The two studied factors were tillage system (chisel 29 plow and ridge tillage) and winter rye cover crop (present and absent). Topographical positions 30 significantly affected the performance of rye cover crop with above ground biomass ranged from 31 80 to 200 kg ha⁻¹ and 120 to >500 kg ha⁻¹ in depressions and summits, respectively. The presence 32 of rye cover tended to increase CO_2 emissions across all topographical positions. However, the 33 amount of increases in the CO₂ emissions was ~15 mg m² hr⁻¹ and <5 mg m² hr⁻¹ in depressions 34 and summits, respectively, which were inversely proportional to the amount of rye biomass 35 36 inputs. Ridge tillage had significantly higher CO₂ emissions than chisel tillage in depressions and showed increasing trends at the slopes and summits. Neither the effect of cover crop nor tillage 37 system was found to be statistically significant across the whole study period on N₂O emissions. 38 39 Regression analysis indicated that both CO₂ and N₂O emissions were positively associated with soil temperature. The effect of temperature on CO₂ emissions was most pronounced in 40 management treatments with cover crops and in topographical depressions. Per a unit increase in 41 42 the soil temperature was a greater increase in the CO_2 emission in the depression areas than in

43 other parts of the landscape. The results of the present study highlight existence of complex

44 interactive influences among cover crop presence, tillage, and topography driven variations in

45 soil properties on the resulting soil GHG emissions.

46 Keywords: greenhouse gas; rye cover crop; depression; ridge tillage; topography

47 **1. Introduction**

World soils contain as much as 2,400 Gt C from the soil surface to a depth of 2 m, which 48 is more than four times the amount of carbon in terrestrial biota and three times of that in the 49 atmosphere (Hillel and Rosenzweig, 2011). Conventional agricultural practices have been known 50 51 to contribute to climate change through GHG including CO₂, and N₂O₂ Adding cover crops, crop rotation, and conservation tillage to conventional cropping systems are among the strategies to 52 enhance SOC and N sequestration potentials to adapt and mitigate climate changes (Liebig et al., 53 2012). The role of cover crops in increasing SOC sequestration, improving soil and water quality 54 by reducing nutrient losses and soil erosion is well known (e.g., Miguez and Bollero, 2005; 55 Scholberg et al., 2010). 56

Farmers choose to grow and manage specific cover crop types based on their own needs 57 and goals influenced by the biological, environmental, social, cultural and economic factors of 58 59 the food systems in which they operate (Snapp et al., 2005). Winter rye has been gaining in popularity as a cover crop for row crop systems due to its winter hardiness. Rye cover takes up a 60 high proportion of residual nitrogen (Ruffo et al., 2004; McSwiney et al., 2010), reduces soil 61 62 erosion, enhances SOC sequestration and suppresses weeds and pests (Shipley et al. 1992; Edwards et al., 1993; Duiker and Curran, 2005). Rye is also one of the best cool-season cover 63 64 crops that withstand the lowest winter temperatures, particularly in the Midwest United States 65 (Clark, 2007). However, when rye is planted across large agricultural fields with high

topographical diversity, the variations in surface topography can affect its performance and themagnitude of the environmental benefits provided by the rye cover crop.

07

The conventional tillage system has been practiced to destroy and disrupt pest life cycles, 68 distribute nutrients in soil, and control weeds (Alvarez and Steinbach, 2009). At the same time, 69 70 conventional tillage can enhance runoff, soil erosion and loss of associated plant nutrients and 71 SOC depending on surface topography (e.g. Rutberg et al., 1996; West and Post, 2002; Shrestha et al 2013). An alternative is to use conservation tillage, which can reduce soil disturbance, 72 microbial activity, and CO_2 and N_2O emissions (Sainju et al., 2012). Ridge tillage is a type of 73 74 conservation tillage that can be particularly effective in providing soil and environmental benefits to row crop agricultural systems. In a course of ridge tillage, ridges are made in equal 75 row spacing and subsequent crops are planted on top of the ridges. Crop residues are left on the 76 slopes of the ridges and are incorporated in the soil once a year when the ridges are remade. 77 Thus, ridge tillage affects distribution of soil moisture, bulk density and SOC (Shi et al., 2012) 78 and mineralizable soil N (Kane et al., 2015). This type of tillage system is usually used for early 79 planting in poorly drained soils, for reducing erosion on contour slopes, for conserving soil 80 moisture, and for decreasing the production costs and weed infestation (Hatfield et al., 1998; 81 82 Sijtsma et al., 1998; Pikul et al., 2001; Archer et al., 2002). Combinations of increased carbon inputs together with reductions in tillage intensity can potentially reduce CO₂ and N₂O emissions 83 from agricultural soils (Dabney et al., 2001). However, little information is available on the 84 85 effects of ridge tillage on soil CO₂ and N₂O emissions.

Variations in soil environmental characteristics, e.g., soil moisture and temperature, in
 conjunction with management effects can either hinder or enhance CO₂ and N₂O emissions in a
 given cropping system. Specifically, soil moisture and temperature determine microbial activities

in biogeochemical processes that lead to C and N transformations and GHG production.

Variations in soil CO₂ emissions were found to be associated with changes in temperature, water 90 filled pore space, incorporated plant residues and tillage intensity, whereas N₂O emissions were 91 92 associated with nitrogen fertilizer applications, temperature, soil nitrate levels, and rainfall events 93 (Franzluebbers, 2005; Stehfest and Bouwman, 2006; Hoben et al., 2011; Abdalla et al., 2014). 94 Seasonal weather patterns also influence soil CO_2 and N_2O emissions because of the high variability of soil moisture and temperature (Liu et al., 2008). For instance, N₂O emissions 95 measured throughout two growing seasons showed 10 times higher emission rates in a warmer 96 97 year than a colder year (Hansen et al., 2014). Surface topography is known to greatly affect the soil characteristics related to CO_2 and 98 N₂O emissions, including soil temperature and moisture, soil hydrologic cycle (Delin et al., 99 100 2000; Vilain et al., 2010), in situ denitrification (Pennock et al., 1992), and SOC, soil pH and available phosphorus (Dessalegn et al., 2014). Topography can also greatly affect the growth of 101 main crops (Kravchenko and Bullock, 2000; Huang et al., 2008), and clover cover crop 102 103 performance (Muñoz and Kravchenko, 2012). However, most of the experimental field work is traditionally conducted on the field sites with minimal topographical variations. This precludes 104 105 analysis of the influence of the land use and management practices on GHG emissions in topographically diverse landscapes, which constitute the majority of the agricultural land in the 106 US Midwest. We hypothesize that the effects of cover crop presence and tillage on soil CO₂ and 107 108 N₂O emissions can vary depending on topography-driven variations in soil hydrology, soil characteristics, and plant growth patterns. 109

The objectives of the study were to examine how contrasting topography influences (i)
performance of rye cover crop in maize-soybean based rotation systems under chisel and ridge

tillage practices, (ii) effects of rye cover crop on CO_2 and N_2O emissions, (iii) effects of chisel and ridge tillage systems on CO_2 and N_2O , and (iv) effects of soil moisture and temperature on CO_2 and N_2O emissions.

115 **2. Materials and methods**

116 **2.1. Description of study sites**

The data for this study were collected from two experimental sites: Kellogg Biological 117 Station (KBS) and Mason Research Farm (Mason). KBS is located in Southwest Michigan (42° 118 24' N, 85° 24' W) and has the mean annual temperature of 10°C and annual precipitation of 119 1027 mm with about half of the precipitation received as snow (Shcherbak and Robertson, 2014). 120 The soils of KBS are well drained Typic Hapludalfs of the Kalamazoo (fine-loamy, mixed, 121 mesic) and Oshtemo (coarse-loamy, mixed, mesic) series, developed on glacial outwash (Mokma 122 123 and Doolittle, 1993; Crum and Collins, 1995). Mason Research Farm is located in central Michigan (42° 37' 45.6 N and 84° 26' 6.74 W). Its mean annual temperature is 13°C and annual 124 precipitation is 977 mm yr⁻¹. The soils of the Mason site are Capac (fine-loamy, mixed, active, 125 126 mesic Aquic Glossudalfs) and Marlette (fine-loamy, mixed, semiactive, mesic Oxyaquic Glossudalfs) series. 127

128

129

130 **2.2. Experimental setup**

The treatment design consisted of four studied factors: topographical position with three levels (depression, slope, and summit) (Fig. 1), phase of the main crop rotation (maize or soybean), tillage (chisel plow or ridge), and rye cover crop (present or absent). At each site, the experiment was a randomized complete block design in a multiple split-strip-plot arrangement.

135	Specifically, topographical position was the main plot factor. At each experimental site two
136	whole plots were identified within each of the three topographical positions. Each whole plot
137	was split into two sub-plots, and two phases of rotation (either maize-soybean or soybean-maize)
138	were assigned at random to the sub-plots within each whole plot. Then the whole plots were split
139	into two halves in an opposite direction and one of the two tillage practices was assigned at
140	random to each half. The sub-sub-plots of each rotation-tillage combination within each whole
141	plot were further split, and the level of the cover crop treatment (either present or absent) was
142	assigned to each half.
143	((Figure 1 will be inserted here))
144	
145	2.3. Soil sampling and analysis
146	Prior to the establishment of the research plots, soil cores were collected from each
147	experimental plot for baseline soil measurements using a Giddings hydraulic soil probe
148	(Giddings Machine Company, Windsor, Colorado). Three soil core samples were collected from
149	the upper 0-10 cm and field replications were mixed and subsamples were used for analysis of
150	selected soil properties. Soil bulk density was estimated from undisturbed soil samples taken
151	with a core sampler (Hao et al., 2008), whereas soil particle size distribution was measured by
152	the hydrometer method (Kroetsch and Wang, 2008). The buffered soil pH was determined by
153	lime index method, and soil organic matter (SOM) was estimated with loss on ignition method
154	(Jolivet et al., 1998). The available phosphorus, cation exchange capacity (CEC) and
155	exchangeable cations were measured with Mehlich 3 (Mehlich, 1984).
156	2.4. Cover crop and main crop agronomy

157	Starting from 2011, cereal rye (Secale cereale) var. Aroostook was established after
158	maize and soybean harvest in cover crop experimental plots. At the Mason site, rye was planted
159	using a John Deere 445 grain drill (John Deere, Moline, Illinois) at 112 kg ha ⁻¹ seeds rate on 3
160	November 2011 and 29 October 2012. At KBS site, rye was planted using a John Deere 750
161	grain drill at 112 kg ha ⁻¹ seeds rate on 18 November 2011 and 10 November 2012. The biomass
162	were collected from two 0.5 m x 0.5 m quadrats randomly placed within each plot before
163	terminating the rye cover crop for planting the main crops. Rye was sampled at Mason on 27
164	April 2012 and 14 May 2013. At KBS, rye was sampled on 6 May 2012 and 8 May 2013. Rye
165	was terminated with glyphosate [N-(phosphonomethyl) glycine] applied at a rate of 2.3 liters a.i.
166	ha ⁻¹ while Ammonium Sulfate (sprayable, CAS #7783-20-2) applied at a rate of 11.97 g L ⁻¹ ha ⁻¹ .
167	The harvested rye plant material was dried to a constant mass at 60 °C using a forced air oven
168	and weighed to determine above ground biomass yield.
169	We chisel plowed to a depth of 20 cm after rye kill and before planting the main crops.
170	Mason site was chisel plowed on 17 May 2012 and 21 May 2013. KBS site was chisel plowed on
171	14 May 2012 and 15 May 2013. Ridge tillage was completed after the main crop planting when
172	maize plants reached the V6 stage. Ridge treatments were cultivated with a Hiniker 6003 ridge
173	cultivator (Hiniker Company, Mankato, MN) on 3 July 2012 and 11 July 2013 at Mason and 6

174 July 2012 and 10 July 2013 at KBS.

The main crops of maize and soybeans were established in a 2-yr rotation at the start of the project. Channel hybrid 193-46VT3 seed maize was planted at a rate of 88,958 seeds ha⁻¹ on 177 17 May 2012 and 5 June 2013 at Mason, and 15 May 2012 and 4 June 2013 at KBS. Channel 2305R2 RR2Y soybeans were planted at a rate of 333,592 seeds ha⁻¹ on 17 May 2012 and 5 June 2013 at Mason and 18 May 2012 and 4 June 2013 at KBS. All maize plots received 168 kg ha⁻¹ 180 N yr⁻¹: 34 kg ha⁻¹ as a starter fertilizer at planting, and another 135 kg ha⁻¹ at side-dress

181 application as urea. These experiments were rain-fed and went without supplemental irrigation.

182 **2.5. Greenhouse gas sampling**

The Greenhouse gas samples were taken during 2012 and 2013 growing seasons from 183 184 cover and no-cover plots with a maize main crop of both tillage treatments at all topographical positions. Rectangular aluminum static flux chambers were manufactured locally for the CO₂ 185 and N₂O measurements following the protocols of Parkin and Venterea (2010). Each chamber 186 consisted of two parts: a permanent anchor driven into the soil and a flux chamber cap equipped 187 188 with a vent tube and a sampling port. The surface area of the anchor was 37.5 cm x 75.0 cm for chisel tillage plots and 41.0 cm x 79.5 cm for ridge tillage plots. The heights of chamber caps 189 were 10 and 20.5 cm for chisel and ridge tillage plots, respectively. The surface area of ridge 190 191 tillage flux chamber was slightly greater than that of the chisel tillage to accommodate the ridges and furrow that could create gradients in CO₂ and N₂O emissions. Similarly, the height of the 192 chamber cap was double for the ridge tillage plots to accommodate the height of the ridge. 193 The CO₂ and N₂O were sampled from surface soil covered with rectangular static flux 194 chambers with infrared Photoacoustic Spectroscopy (PAS) (1412 Photoacoustic multi-gas 195 196 monitors; INNOVA Air Tech Instruments, Ballerup, Denmark). Details of the instrumentations and calibration of PAS were provided by Iqbal et al. (2013). The gas sampling was conducted 197

from 8:00 a.m. to 12:00 p.m. weekly/biweekly from May to September during 2012 and 2013growing seasons.

200 CO_2 and N_2O concentrations were measured with PAS at two minute intervals for a total of 201 seven times per each flux determination per plot. The emissions were computed following the 202 procedures outlined by Parkin and Venterea et al (2010):

$$F = \frac{(f * M * Atm)}{(R * T)} * \frac{Chv}{SA}$$

203

where F: CO₂-C or N₂O-N emissions (mg m⁻²), f: CO₂ or N₂O measured with PAS (ppm), M: 204 atomic mass of N or C, Atm: atmospheric pressure, R: universal gas constant (0.0820575 L 205 atm/mol/K), T: temperature (K), Chv: chamber volume (m³), SA: surface area of chamber (m²). 206 Linear regressions were fitted to the gas emissions obtained with the above equation, $F(mg m^{-2})$ 207 vs time of sampling (hr.) to determine the rates of the CO₂ and N₂O emissions as outlined in the 208 209 trace gas measurement protocol (Parkin and Venterea et al., 2010). The rates of CO₂-C and N₂O-210 N (hereafter called CO_2 and N_2O) emissions were used for further statistical analyses. 211 Soil temperature and moisture were measured alongside with CO₂ and N₂O emissions. Pocket thermometers (Taylor Precision Products, Oak Brook, Illinois, 60523) were used to 212 213 measure soil temperature during gas measurements at two different positions near the chamber's

anchor: in the row and in-between the rows, the latter corresponded to furrows in the ridge

tillage. Soil moisture was measured using time domain reflectance (IMKO HD-2 IMKO GmbH,

Ettlingen, Germany). Readings were made at three separate points around the anchor.

217 **2.6. Statistical analysis**

Statistical analysis of the rye biomass and rates of CO₂ and N₂O emissions were 218 219 conducted using the PROC MIXED procedure in SAS (SAS Institute, 2012). Topography, 220 tillage, rye cover crop presence and their interactions were treated as fixed effects in the statistical models, while plots, sub-plots, and sub-sub-plots nested within their respective factors 221 222 were treated as random effects and used as error terms. Normality of the residuals was assessed using normal probability plots and stem-and-leaf plots using the PROC UNIVARIATE 223 procedure. Whenever necessary the data were transformed using either square root or natural log 224 transformation to achieve normality. 225

Linear regression analysis was carried out to examine the relationship between soil 226 227 temperature and moisture with CO₂ and N₂O emissions at different topographical positions, cover crop and tillage systems. SAS procedure PROC REG was used for the regression analysis. 228 229 3. Results and discussion **3.1. Selected soil properties** 230 The surface topography significantly affected a number of measured soil properties 231 (P<0.05) at both KBS and Mason sites (Table 1). The soil particle size distributions were 232 significantly different among topographical positions except for sand at KBS and clay at Mason 233 234 sites. The significantly higher amount of sand at the depressions of Mason site than at the summits and slopes was unusual as lower amount of sand is typically expected at the depressions 235 (Dessalegn et al., 2014) and could possibly be associated with its past history as an outwash. 236 Bulk density was significantly higher at the summits of KBS and depressions of Mason sites. 237 Consistent with other studies (Khan et al., 2013); higher values of bulk density at the depression 238 of Mason site were associated with the higher amount of sand. 239 240 Exchangeable bases and CEC tended to be the highest at slopes while the lowest at summits of both sites. The higher values of exchangeable bases and CEC at the slope positions 241

agreed with a similar study reported by Ebeid et al. (1995). The authors indicated that the
concentration of exchangeable K, Ca and Mg, and CEC increased as the top soil was removed by
erosion. Topography is one of the soils forming factors and continued soil removal from slopes
hinder soil development and relatively high exchangeable bases and CEC are characteristics of
young soils. The soil pH was significantly higher at the slopes than at the summits and
depressions of Mason site, whereas there were no significant differences in soil pH among
topographical positions at KBS site. The higher soil pH at the slopes than at the summits and

depressions of the Mason site can be explained by higher amounts of exchangeable bases andCEC at the slopes.

The available P concentration was higher by three folds at the depressions of the Mason 251 site than at the slopes and summits, and significantly lower at the slopes than at the summits and 252 depressions of KBS site. The wider range between the depressions and the other topographical 253 254 positions in concentration of available P clearly indicated that P is continually transported from the slopes and summits by erosion and deposited at the depressions. The magnitude of 255 differences among topographical positions, soil types, prevailing weather conditions, and soil 256 257 management practices are known to affect amounts of P transported and deposited at depressions (Siemens et al., 2008; Negassa and Leinweber, 2009). 258 Consistent with numerous previous observations (e.g., Changere and Lal, 1997; 259 260 Kravchenko and Bullock, 2000; Khan et al., 2013) concentration of the SOM was the highest at the depressions followed by summits and then slopes. The highest concentration of SOM at 261 depressions can be attributed to accumulation from the summits and slopes by erosion, greater 262 263 carbon inputs from better vegetation growth at lower topographic positions, and frequent water logging at depressions, which can slow down SOM turnover rate. 264

265

((Table 1 will be inserted here))

266 **3.2. Performance of rye cover crop**

Overall rye performance in the studied sites was relatively poor and the above ground biomass of rye cover was in the range of 100 to 500 kg ha⁻¹ (Fig. 2). These levels of the above ground rye cover biomass were several folds lower than the levels that were suggested as necessary for providing economic and environmental cover crop benefits (Duiker, 2014; Farsad et al., 2011). The worst performance of rye cover crop was observed in depressions as compared with slopes and summits. In 2012, rye cover biomass of the depressions was significantly lower than in the summits at both KBS (p<0.05) and Mason sites (p<0.1). In 2013, the depressions had numerically lower rye biomass values, but the differences were not statistically significant. The poor performance of rye cover crop in depressions was associated with overall poorer growing spring conditions, i.e. cold and wet with frequent waterlogging (Table 2).

The performance of rye cover crop was significantly higher (P<0.05) in chisel tillage treatment than in ridge tillage at the slopes of the KBS site in both 2012 and 2013 cropping seasons (Table 3). The significantly lower performance of rye cover crop in ridge tillage treatment at the slopes of KBS site was attributed to exposure of many rocks with ridge formation that hindered the growth of rye cover crop on the ridges.

- 283 ((Figure 2 will be inserted here))
- 284 ((Table 2 will be inserted here))
- 285 ((Table 3 will be inserted here))

3.3. Effects of topography and soil management on CO₂ and N₂O emissions

287 **3.3.1.** Topography

The overall emission of CO_2 and N_2O were significantly (P<0.05) higher in depression areas than at slopes and summits (Fig. 3). High levels of SOM and soil moisture (Table 1 and 2) are the most likely reasons for the higher CO_2 emission in depressions. The rate of CO_2 emissions under favorable temperature and moisture conditions has been reported to be limited by labile SOM (Parkin et al., 1996). The present finding is consistent with the result reported from the Northern Mixed Grass Prairie of Canada, where the largest CO_2 emission was recorded at the depression (Braun et al., 2013). ((Figure 3 will be inserted here))

297	The higher N_2O emission at depressions can be associated with higher soil moisture
298	contents. Consistent with our results, Corre et al (1996) reported higher N_2O emissions at the
299	depressions than at the slope positions in cropland, fallow, pasture and forest sites in Canada.
300	Similarly, higher N_2O emissions were observed at the depressions of an agricultural plateau to
301	the riparian buffer, grassland, and a forest site in France (Vilain et al., 2010). Furthermore, the
302	temperature sensitivity of the N_2O emission exhibited the spatial trend of increasing with
303	descending slope in Japanese coniferous forests and N_2O emissions at the depressions were
304	higher than at the summits (Nishina et al., 2009). Although overall topographical positions
305	affected N ₂ O emissions, the patterns varied seasonally as soil moisture, temperature and soil
306	available nitrogen changes (Izaurralde et al., 2004).
307	3.3.2. Cover crop
308	Presence of cover crops numerically increased CO ₂ emissions in all three topographic
309	positions (Fig. 4a). Consistent with our observations, Sanz-Cobena et al. (2014) reported that
310	barley (Hordeum vulgare L.) and vetch (Vicia villosa L) cover crops increased CO ₂ emission by
311	21-28%. While Kallenbach et al. (2010) observed higher CO_2 emissions in treatments with a
312	winter legume cover as compared to no cover crop. The higher CO ₂ emissions with cover crop
313	treatments can be attributed to the presence of the labile fraction of SOM derived from the cover
314	crops.
315	However, it is interesting to notice that the greatest increase in the CO ₂ emissions due to
316	cover crop presence was observed in depressions (p<0.05), while the increase was smaller on
317	slopes (p<0.1) and not statistically significant in summits (Fig. 4a). As discussed earlier,

318 depressions have produced the lowest amounts of rye biomass as compared with slopes and 319 summits in the two years of the study. Thus, it should be noted that it was not just the amounts of cover crop inputs that were driving the differences in CO_2 emissions. Most likely the CO_2 320 321 emission differences resulted from a combined effect of two components: the presence of the 322 cover crop inputs/root activities and the inherent soil properties at each topographical position. This observation is consistent with our earlier results which indicated that in the presence of 323 fresh plant residue; structure and characteristics of soil pores can have a substantial effect on soil 324 CO_2 emission (Negassa et al., 2015). It is possible that the addition of cover crop inputs to the 325 326 depression areas resulted in priming effect (Guenet et al., 2012) that enhanced decomposition of 327 native SOC stimulated by additions of fresh plant residue inputs. The presence of rye cover crop did not affect N₂O emissions at any topographical 328 position (Fig 4b). Different studies reported contrasting results with regard to cover crop effects 329 on N₂O emissions (Abdalla et al., 2012; Mitchell et al., 2013). A meta-analysis of 26 peer-330 reviewed articles demonstrated that 60% of the published studies reported that the presence of 331 332 cover crops increased N₂O emissions, while 40% reported decreases N₂O emissions due to cover crop presence (Basche et al., 2014). The contrasting findings could be explained by variations in 333

cover crop performances, soil characteristics, cropping systems, methods of cover crop

incorporation and seasons of N_2O samplings among the studies.

336

((Figure 4 will be inserted here))

337 **3.3.3. Tillage systems**

The CO_2 emissions under the ridge tillage system were numerically higher than under chisel tillage at all three topographical positions, but it is at the depressions that the difference tended to be statistically significant (p<0.1) (Fig. 5a). The higher CO_2 emission with ridge tillage

treatment can be attributed to higher levels of soil moisture in ridge tillage as compared to chisel 341 tillage (Table 2). Hatfield et al (1998) also reported that ridge tillage changes soil moisture 342 pattern as compared to other tillage systems. Tillage systems not only influence soil moisture, 343 but also expose protected labile SOM fractions that can be reflected in the rate of CO₂ emissions. 344 There were no significant differences between chisel and ridge tillage systems in terms of 345 346 N_2O emissions (Fig. 5b). Extremely high temporal and spatial variability in N_2O emission data is the most likely reason for difficulty in detecting statistically significant differences between the 347 two tillage systems in N₂O emissions in this study (Kravchenko and Robertson, 2015). The 348 349 influence of tillage systems on GHG emissions also can vary depending on soil characteristics. 350 For instance, Rochette (2008) demonstrated that no-tillage system generally increased N_2O emissions in poorly-aerated soils, but were neutral in soils with good and medium aeration. 351 352 Although soil moisture content slightly increased with ridge tillage treatment in the present study, the differences apparently were not sufficiently high to result in detectable differences in 353 N_2O emissions in the spring and summer of 2012 and 2013. 354

355

((Figure 5 will be inserted here))

356 **3.3.4.** Variability of CO₂ and N₂O emissions

The variance of CO_2 emission data was the highest in depression areas in both growing seasons and both experimental sites (Fig. 6), whereas variances of N₂O emission data were similar across topographical positions, growing seasons and locations (data not shown). The highest variability of CO_2 emissions at depressions could be due to greater variations in soil moisture and temperature there during the sampling period (May to September). Soil CO_2 emissions can exhibit pronounced day-to-day differences arising from management effects and soil moisture and temperature variations (Parkin and Kaspar, 2004).

364	Surprisingly, even though tillage had no detectable effect on the mean levels of N_2O
365	emissions (Fig. 5b), the variability of N_2O emission data was significantly higher in ridge tillage
366	than in chisel across both sites and both studied years (p< 0.1) (Fig. 7). The high variability in
367	N_2O emissions in ridge tillage is primarily driven by very high N_2O flux values in the 1-2 weeks
368	immediately after the formation of the ridges that took place in July of both years. The formation
369	of ridges produced a substantial soil disturbance that led to short-term spikes in N ₂ O emissions at
370	both sites of both years. Interestingly, there was only a minor increase in CO ₂ emissions after
371	ridge formation observed at the Mason (but not KBS) site in 2012.
372	((Figure 6 will be inserted here))
373	((Figure 7 will be inserted here))
374	3.3.5. Soil moisture and temperature
375	Average soil temperature and moisture of the two seasons differed among topographical
376	positions, with the highest soil moisture observed at depressions and the highest temperature
377	values at slopes (Table 2). However, tillage systems and rye cover crop presence did not
378	significantly influence soil moisture and temperature; with only slightly numerically higher soil
379	moisture levels observed in the ridge tillage.

Regression analysis indicated that the CO_2 emissions were significantly and positively associated with soil temperature in all topographical positions. The significant effects of soil temperature on CO_2 emission were consistent with those reported previously. For instance, regression analysis indicated that soil temperature accounted for 65%, soil moisture for 5%, and air temperature for 3% of variability in CO_2 emissions (Frank et al., 2002). However, there was a tendency for regression slope values between CO2 emissions and

temperature to vary across the landscape, with the highest and the lowest values observed in the

387 depressions and slopes, respectively (Table 4). The differences in the regression slopes among the topographical positions were statistically significant at both sites in 2012. A similar numeric 388 trend of higher regression slopes in the depressions was observed at both sites in 2013; although 389 the differences were not statistically significant. The greater regression slopes indicate that per a 390 391 unit increase in the soil temperature was a greater increase in the CO_2 emission in depression 392 areas than in the slopes. The higher SOM, presumably associated with greater microbial activity in depression areas, is a likely explanation for the observed greater response of the CO₂ emission 393 values to increase soil temperature. Another factor possibly contributing to stronger relationships 394 395 between CO₂ emission and temperature at the depressions were the overall higher soil moisture levels (Table 2). For example, during hot dry periods in summer, especially pronounced in 2012, 396 soils in slopes and summits were too dry to support substantial microbial activity and CO₂ 397 emissions, while there might still be sufficient soil moisture in the depressions. 398

Across both years and both study sites, the regression slopes between CO_2 emissions and temperatures were significantly higher in the cover crop than in the no cover plots (Table 4). Greater sensitivity of CO_2 emissions to soil temperature in cover crop plots was likely reflecting greater presence of fresh cover crop plant residues and their decomposition was likely faster at optimal temperatures. To the best of our knowledge, this is the first report of differences in CO_2 relationships with temperatures due to cover crop presence under field conditions.

The regression analysis revealed a lack of significant differences between soil moisture and CO_2 emissions (data not shown). Studies conducted on different land use also observed lack of relationship between soil moisture and CO_2 emissions (Reth et al., 2005). Whereas Kallenbach et al (2010) reported a negative relationship between soil moisture and CO_2 emissions. The contribution of soil moisture is well known for SOM mineralization and CO_2 emissions (Abera et al., 2012, Srivastava et al., 2012). However, the relationship of soil moisture and temperature
with CO₂ emissions can depend on labile fractions of SOC and microbial activity dynamics over
time.

413

((Table 4 will be inserted here))

The linear regression between N_2O emissions and soil temperature was not significant in 414 any of the topographical positions and cover crop treatments (data not shown). However, there 415 was a tendency for higher regression slopes between soil temperature and N₂O emission in ridge 416 tillage than in chisel tillage (Table 5). Greater regression slope values in ridge tillage than chisel 417 418 tillage indicate that a unit increase in soil temperature resulted in a greater increase in N_2O emissions under ridge tillage than under the chisel. There was no significant relationship between 419 soil moisture and N₂O in both chisel and ridge tillages. N₂O emissions were demonstrated to be 420 421 positively related to soil temperature (Schindlbacher and Zechmeister-Boltenstern, 2004); and to have their optimum in the range of 70-80% water-filled pore space (Butterbach-Bahl et al., 422 2013). However, the relationships between N_2O and soil moisture, and N_2O and soil temperature 423 424 are known to be not consistent in different growing seasons (Dyer et al., 2012). Furthermore, many soil physical, chemical and biological properties affect N₂O emissions that masked the 425 426 effects of soil temperature and moisture both in the present and previous studies (Robertson, 1994). Our results indicate that topography and tillage practice can also be among the factors that 427 influence the magnitude of the sensitivity in GHG emissions to soil temperature variations. 428 429 ((Table 5 will be inserted here)) 4. Conclusion 430

The topography influenced rye cover crop performance, soil moisture and temperatures,
as well as CO₂ and N₂O emissions. The performance of rye cover crop was inferior at depression

to the slope and summit areas. The greatest amounts of CO₂ and N₂O fluxes produced in
topographical depressions.

Presence of rye cover crop increased CO₂ emissions across all topographical positions; 435 however, counterintuitively, the largest increases in CO₂ emissions due to cover crop presence 436 437 were observed in the depression areas where amounts of rye biomass inputs were the lowest. 438 Both temporal variability and sensitivity of CO_2 emissions to soil temperature was substantially higher in the depressions than in the slopes and summits. Moreover, sensitivity of CO₂ emissions 439 to variations in soil temperature was much higher in treatments with cover crops than in 440 441 treatments without cover crops. CO₂ emissions from ridge tillage were higher than those in chisel across all topographical positions. 442

No significant effect on mean values of N_2O emissions from either cover crop presence or tillage was detected, likely resulting from extremely high variability of N_2O data. However, higher temporal variability of N_2O data in ridge tillage than chisel tillage reflected during the short period by substantial spikes in N_2O emissions immediately after the formation of the ridges. Temperature sensitivity in N_2O emissions was also higher in ridge tillage than chisel tillage management.

Our findings demonstrate that topographical variations can influence not only the overall amounts of emitted CO_2 and N_2O , but also the magnitude of the effects that different land use and management practices, such as use of cover crop and tillage, have on the GHG emissions. These influences are likely driven by topography induced variations in soil organic matter, soil temperature and soil moisture. Based on the obtained results it is suggested that the influence of topography should be considered when generating large scale estimates of the impacts of different land use and management practices on greenhouse gas emissions. 456 Acknowledgements

- 457 This research is part of a regional collaborative project supported by the USDA-NIFA,
- 458 Award No. 2011-68002-30190 "Cropping Systems Coordinated Agricultural Project (CAP):
- 459 Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems"
- 460 sustainablecorn.org.

461 **6. References**

- 462 Abdalla, M., Hastings, A., Helmy, M., Prescher, A., Osborne, B., Lanigan, G., Forristal, D.,
- 463 Killi, D., Maratha, P., Williams, M., Rueangritsarakul, K., Smith, P., Nolan, P., Jones,
- 464 M.B., 2014. Assessing the combined use of reduced tillage and cover crops for mitigating

greenhouse gas emissions from arable ecosystem. *Geoderma* 223-225, 9-20.

- 466 Abdalla, M., Rueangritsarakul, K., Jones, M., Osborne, B., Helmy, M., Roth, B., Burke, J.,
- 467 Nolan, P., Smith, P., Williams, M. 2012. How effective is reduced tillage-cover crop
- 468 management in reducing N₂O emissions from arable crop soils? Water Air Soil Pollut.
 469 223, 5155-5174.
- 470 Abera, G., Wolde-meskel, E., Bakken, L.R. 2012. Carbon and nitrogen mineralization dynamics
- 471 in different soils of the tropics amended with legume residues and contrasting soil472 moisture contents. Biol. Fert. Soils 48, 51-66.
- Alvarez, R., Steinbach., H. S. 2009. A review of the effects of tillage systems on some soil
 physical properties, water content, nitrate availability and crops yield in the Argentine
 Pampas. Soil Till. Res. 104, 1-15.
- Archer, D.W., Pikul, J.L., Riedell, W.E. 2002. Economic returns and input use under ridge and
 conventional tillage in the northern corn belt, USA. Soil Till. Res 67, 1-8.

478	Basche, A.D., Miguez, F.E., Kaspar, T.C., Castellano, M.J. 2014. Do cover crops increase or
479	decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471-482.
480	Braun, M., Bai, Y., McConkey, B., Farrell, R., Romo, J.T., Pennock, D. 2013. Greenhouse gas
481	flux in a temperate grassland as affected by landform and disturbance. Landscape Ecol.
482	28, 709-723.
483	Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese1, R., Zechmeister-Boltenstern, S.
484	2013. Nitrous oxide emissions from soils: how well do we understand the processes and
485	their controls? Phil Trans. R. Soc. B. 368, 20130122.
486	Changere, A., Lal, R. 1997. Slope position and erosional effects on soil properties and corn
487	production on a Miamian soil in central Ohio. J. Sustain. Agr. 11, 5-21.
488	Clark, A. (Ed.) 2007. Managing cover crops profitably. 3rd ed. SARE Outreach Handbook Series
489	Book 9. National Agricultural Laboratory, Beltsville, MD. (Available online
490	at: http://www.sare.org/publications/covercrops.htm) (verified 1 February 2015).
491	Corre, M D., van Kessel, C., Pennock, D.J. 1996. Landscape and seasonal patterns of nitrous
492	oxide emissions in a semiarid region. Soil Sci. Soc. Am. J. 60, 1806-1815.
493	Crum, J.R., Collins, H.P. 1995. KBS soils. W.K. Kellogg Biol. Sta. Long-Term Ecol. Res.
494	Project, Michigan State Univ., Hickory Corners, MI. Available at
495	http://lter.kbs.msu.edu/research/site-description-and-maps/soil-description/.
496	Dabney, S.M., Delgado, J.A., Reeves, D.W. 2001. Using winter cover crops to improve soil and
497	water quality. Comm. Soil Sci. Plant Anal. 32, 1221-1250.
498	Delin, G.N., Healy, R.W., Landon, M.K., Bohlke, J.K. 2000. Effects of topography and soil
499	properties on recharge at two sites in an agricultural field. J. Am. Water Resour. Assoc.
500	36, 1401-1416.

501	Dessalegn, D., Beyene, S., Rama, N., Walley, F., Gala, T.S. 2014. Effects of topography and
502	land use on soil characteristics along the toposequence of Ele watershed in southern
503	Ethiopia. Catena 115, 47-54.

- 504 Duiker, S.W. 2014. Establishment and termination dates affect fall-established cover crops.
 505 Agron. J. 106, 670-678.
- Duiker, S.W., Curran, W.S. 2005. Rye cover crop management for corn production in the
 Northern Mid-Atlantic Region. Agron. J. 97, 1413-1418.
- 508 Dyer, L., Oelbermann, M., Echarte, L. 2012. Soil carbon dioxide and nitrous oxide emissions
- during the growing season from temperate maize-soybean intercrops. J. Plant Nutr.Soil
 Sci. 175, 394-400.
- Ebeid, M.M., Lal, R., Hall, G.F., Miller, E. 1995. Erosion effects on soil properties and soybean
 yield on Miamian soil in western Ohio in a season below normal rainfall. Soil Technol. 8,
 97-108.
- Edwards, W.M., Triplett, G.B., Van Doren, D.M., Owens, L.B., Redmond, C.E., Dick, W.A.
- 515 1993. Tillage studies with a corn-soybean rotation: hydrology and sediment loss. Soil Sci.
 516 Soc. Am. J. 57, 1051-1055.
- Farsad, A., Randhir, T.O., Herbert, S.J., Hashemi, M. 2011. Spatial modeling of critical planting
 date for winter rye cover crop to enhance nutrient recovery. Agron. J. 103, 1252-1257.
- Frank, A.B., Liebig, M.A., Hanson, J.D. 2002. Soil carbon dioxide emissions in northern
 semiarid grasslands. Soil Bio. Biochem. 34, 1235-1241.
- Franzluebbers, A.J. 2005. Soil organic carbon sequestration and agricultural greenhouse gas
 emissions in the southeastern USA. Soil Till. Res. 83, 120-147.
- Guenet, B., Juarez, S., Bardoux, G., Abbadie, L., Chenu, C. 2012. Evidence that stable C is as
 vulnerable to priming effect as is more labile C in soil. *Soil Bio.Biochem.* 52, 43-48.

525	Hansen, S., Bernard, M., Rochette, P., Whalen, J.K., Dörsch, P. 2014. Nitrous oxide emissions
526	from a fertile grassland in Western Norway following the application of inorganic and
527	organic fertilizers. Nutr. Cycl. Agroecosys. 98, 71-85.
528	Hao, X., Ball, B. C., Culley, J. L. B., Carter, M. R., Parkin, G. W. 2008. Soil Density and
529	Porosity. In: M. R. Carter and E. G. Gregorich (Eds.), Soil Sampling and Methods of
530	Analysis 2 nd edition, Canadian Society of Soil Science, CRC Press, Taylor & Francis
531	Group, Boca Raton, FL, pp. 743-759.
532	Hatfield, J. L., R. R. Allmaras, G. W. Rehm, and B. Lowery. 1998. Ridge tillage for corn and
533	soybean production: environmental quality impacts. Soil Till. Res. 48, 145-154
534	Hille, D. Rosenzweig, C. 2011. The Role of Soils in Climate Change. In: D. Hille and C.
535	Rosenzweig (Eds.); Handbook of Climate Change and Agroecosystems: Impacts,
536	Adaptation, and Mitigation, ICP Series on Climate Change Impacts, Adaptation, and
537	Mitigation Vol. 1, Imperial College Press, Singapore, pp. 9-20.
538	Hoben, J.P., Gehl, R.J., Millar, N., Grace, P.R., Robertson, G.P. 2011. Nonlinear nitrous oxide
539	(N ₂ O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob
540	Change Biol 17, 1140-1152.
541	Huang, X., Wang, L., Yang, L., Kravchenko, A.N. 2008. Management effects on relationships of
542	crop yields with topography represented by wetness index and precipitation. Agron. J.
543	100, 1463-1471.
544	Iqbal, J., Castellano, M.J., Parkin, T.B. 2013. Evaluation of photoacoustic infrared spectroscopy
545	for simultaneous measurement of N_2O and CO_2 gas concentrations and emissions at
546	the soil surface. Glob. Change Biol. 19, 327-336.

547	Izaurralde, R.C., Lemke, R.L., Goddard, T.W., McConkey, B., Zhang, Z. 2004. Nitrous oxide
548	emissions from agricultural toposequences in Alberta and Saskatchewan. Soil Sci. Soc.
549	Am. J. 68, 1285-1294.
550	Jolivet, C., Arrouays, D., Bernoux, M. 1998. Comparison between analytical methods for
551	organic carbon and organic matter determination in sandy Spodosols of France.
552	Commun. Soil Sci. Plan. 29, 2227-2233.
553	Kallenbach, C.M., Rolston, D.E., Horwath, W.R. 2010. Cover cropping affects soil N ₂ O and CO ₂
554	emissions differently depending on type of irrigation. Agri. Ecosyst. Environ. 137, 251-
555	260.
556	Kane, D.A., Snapp, S.S., Davis, A.S. 2015. Ridge tillage concentrates potentially mineralizable
557	soil nitrogen, facilitating maize nitrogen uptake. Soil Sci. Soc. Am. J. 79, 81-88.
558	Khan, F., Hayat, Z., Ahmad, W., Ramzan, M., Shah, Z., Sharif, M., Mian, I.A., Hanif, M. 2013.
559	Effect of slope position on physico-chemical properties of eroded soil. Soil Environ. 32,
560	22-28.
561	Kravchenko, A.N., Robertson, G.P. 2015. Statistical challenges in analyses of chamber-based
562	soil CO ₂ and N ₂ O emissions data. Soil Sci. Soc. Am. J. 79, 200-211.
563	Kravchenko, A.N., Bullock, D.G. 2000. Correlation of corn and soybean grain yield with
564	topography and soil properties. Agron. J. 92, 75-83.
565	Kroetsch, D., Wang, C. 2008. Particle Size Distribution. In: M. R. Carter and E. G. Gregorich
566	(Eds.), Soil Sampling and Methods of Analysis 2 nd edition, Canadian Society of Soil
567	Science, CRC Press, Taylor & Francis Group, Boca Raton, FL, pp. 713-725.
568	Liebig, M.A., Franzluebbers, A.J., Follett, R.F. 2012. Agriculture and climate change: mitigation
569	opportunities and adaptation imperatives. In: Liebig, M.A et al (Eds.), Managing

570	Agricultural Greenhouse Gases Coordinated Agricultural Research through GRACEnet
571	to address our Changing Climate. Academic Press, New York, USA, pp. 3-11.
572	Liu, H., Zhao, P., Lu, P., Wang, Y., Lin, Y., Rao, X. 2008. Greenhouse gas emissions from soils
573	of different land-use types in a hilly area of South China. Agric. Ecosyst. Environ. 124,
574	125-135.
575	McSwiney, C.P., Snapp, S.S., Gentry, L.E. 2010. Use of N immobilization to tighten the N cycle
576	in conventional agroecosystems. Ecol. Appl. 23, 648-662.
577	Mehlich, A. 1984. Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant.
578	Commun. Soil Sci. Plan. 15, 1409-1416.
579	Miguez, F.E, Bollero, G.A. 2005. Review of corn yield response under winter cover cropping
580	systems using meta-analytic methods. Crop Sci. 45: 2318-2329.
581	Mitchell, D.C., Castellano, M.J., Sawyer, J.E., Pantoja, J. 2013. Cover crop effects on nitrous
582	oxide emissions: role of mineralizable carbon. Soil Sci. Soc. Am. J. 77, 1765-1773.
583	Mokma, D.L., Doolittle, J.A. 1993. Mapping some loamy Alfisols in southwestern Michigan
584	using ground-penetrating radar. Soil Surv. Horiz. 34, 71-77.
585	Muñoz, J.D., Kravchenko, A. 2012. Deriving the optimal scale for relating topographic attributes
586	and cover crop plant biomass. Geomorphology 179, 197-207.
587	Negassa, W., Guber, A., Kravchenko, A., Marsh, T., Hildebrandt, B., Rivers, M. 2015.
588	Properties of soil pore space regulate pathways of plant residue decomposition and
589	community structure of associated bacteria. PLoS ONE 10(4): e0123999.
590	doi:10.1371/journal.pone.0123999
591	Negassa, W., Leinweber, P. 2009. How does the Hedley sequential phosphorus fractionation
592	reflect impacts of land use and management on soil phosphorus: A review. J. Plant Nutr.
593	S011 Sc1. 172, 305-325.

594	Nishina, K., Takenaka, C., Ishizuka, S. 2009. Spatiotemporal variation in N ₂ O flux within a
595	slope in a Japanese cedar (Cryptomeria japonica) forest. Biogeochemistry 96, 163-175.
596	Parkin, T.B., Venterea, R.T. 2010. Sampling Protocols. In: Follett, R.F. (Ed.), Chamber-Based
597	Trace Gas Flux, Measurements, In Sampling Protocols. pp. 3-1 to 3-39
598	(www.ars.usda.gov/research/GRACEnet, accessed in March 2014).
599	Parkin, T.B., Kaspar, T.C. 2004. Temporal variability of soil carbon dioxide flux: effect of
600	sampling frequency on cumulative carbon loss estimation. Soil Sci. Soc. Am. J. 68, 1234-
601	1241.
602	Parkin, T.B., Doran, J.W., Franco-Vizcaino, E. 1996. Field and Laboratory Tests of Soil
603	Respiration. In: Doran J.W, and Jones A.J (Eds.), Methods for Assessing Soil Quality,
604	SSSA Special Publication 49. Madison, WI, pp. 231-45.
605	Pennock, D. J., van Kessel, C., Farrell, R. E., Sutherland, R. A. 1992. Landscape-scale variations
606	in denitrification. Soil Sci. Soc. Am. J. 56: 770-776.
607	Pikul, J.L., Carpenter-Boggs, L., Vigil, M., Schumacher, T.E., Lindstrom, M.J., Riedell, W.E.
608	2001. Crop yield and soil condition under ridge and chisel plow tillage in the northern
609	Corn Belt, USA. Soil Till. Res. 60, 21-33.
610	Reth, S., Reichstein, M., Falge, E. 2005. The effect of soil water content, soil temperature, soil
611	pH-value and the root mass on soil CO ₂ efflux-A modified model. Plant Soil 268, 21-33.
612	Rochette, P. 2008. No-till only increases N ₂ O emissions in poorly-aerated soils. Soil Till. Res.
613	101, 97-100.
614	Robertson, K. 1994. Nitrous Oxide Emission in Relation to Soil Factors at Low to Intermediate
615	Moisture Levels. J. Environ. Qual. 23, 805-809.

616	Ruffo, M.L; Bullock, D.G., Bollero, G.A. 2004. Soybean yield as affected by biomass and
617	nitrogen uptake of cereal rye in winter cover crop rotation. Agron. J. 96, 800-805.
618	Rutberg, R.L., Schimel, D.S., Hajdas, I., Broeckeri, W.S. 1996. The effect of tillage on soil
619	organic matter using ¹⁴ C: a case study. Radiocarbon 38, 209-217.
620	Sainju, U.M., Stevens, W.B., Caesar-TonThat, T., Liebig, M.A. 2012. Soil greenhouse gas
621	emissions affected by irrigation, tillage, crop rotation, and nitrogen fertilization. J.
622	Environ. Qual. 41, 1774-1786.
623	Sanz-Cobena, A., García-Marco, S., Quemada, M., Gabriel, J.L., Almendros, P., Vallejo, A.
624	2014. Do cover crops enhance N_2O , CO_2 or CH_4 emissions from soil in Mediterranean
625	arable systems? Sci. Total Environ. 466-467, 164-174.
626	SAS Institute. 2012. SAS User's Guide. Version 9.3. SAS Institute, Cary, NC.
627	Schindlbacher, A., Zechmeister-Boltenstern, S. 2004. Effects of soil moisture and temperature on
628	NO, NO ₂ , and N ₂ O emissions from European forest soils. J. Geophys. Res. 109, D17302.
629	Scholberg, J.M.S., Dogliotti, S., Leoni, C., Cherr, C.M., Zotarelli, L., Rossing, W.A.H. 2010.
630	Cover crops for sustainable agrosystems in the Americas. In: E. Lichtfouse (Ed.), Genetic
631	Engineering, Biofertilisation, Soil Quality and Organic Farming, Sustainable Agriculture
632	Reviews 4. Springer, New York, pp. 23-58.
633	Shcherbak, I., Robertson, G.P. 2014. Determining the diffusivity of nitrous oxide in soil sing in
634	situ tracers. Soil Sci. Soc. Am. J. 78, 79-88.

- 635 Shi, X.H., Yang, X.M., Drury, C.F., Reynolds, W.D., McLaughlin, N.B., Zhang, X.P. 2012.
- 636 Impact of ridge tillage on soil organic carbon and selected physical properties of a clay
- loam in southwestern Ontario. Soil Till. Res. 120, 1-7.

- 638 Shipley, P.R., Meisinger, J.J., Decker, A.M. 1992. Conserving residual corn fertilizer nitrogen 639 with winter cover crops. Agron. J. 84, 869-876
- Shrestha, B.M., McConkey, B.G., Smith, W.N., Desjardins, R.L., Campbell, C.A., Grant, B.B., 640
- 641 Miller, P.R. 2013. Effects of crop rotation, crop type and tillage on soil organic carbon in a semiarid climate. Can. J. Soil Sci. 93, 137-146. 642
- Siemens, J., Ilg, K., Pagel, H., Kaupenjohann, M. 2008. Is colloid-facilitated phosphorus 643 leaching triggered by phosphorus accumulation in sandy soils? J. Environ. Qual. 37: 644 2100-2107. 645
- Sijtsma, C. H., Campbell, A. J., McLaughlin, N.B., Carter, M.R. 1998. Comparative tillage costs 646
- for crop rotations utilizing minimum tillage on a farm scale. Soil Till. Res. 49, 223-231. 647
- Snapp, S.S., Swinton, S.W., Labarta, R., Mutch, D., Black, J.R., Leep, R., Nyiraneza, J., O'Neil, 648
- K. 2005. Evaluating cover crops for benefits, costs and performance within cropping 649 system niches. Agron. J. 97, 322-332. 650
- Srivastava, M., Sharma, S.D., Kudrat, M. 2012. Effect of crop rotation, soil temperature and soil 651
- 652 moisture on CO₂ emission rate in Indo-Gangetic Plains of India. Int J Agric For 2, 117-120. 653
- 654 Stehfest, E. Bouwman, L. 2006. N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global 655 annual emissions. Nutr. Cycl. Agroecosys. 74, 207-228. 656
- 657 Vilain, G., Garnier, J., Tallec, G., Cellier, P. 2010. Effect of slope position and land use on nitrous oxide (N₂O) emissions (Seine Basin, France). Agric. For. Meteorol. 150, 1192-658 1202.
- 659

- 660 West, T.O. and Post, W.M. 2002. Soil organic carbon sequestration rates by tillage and crop
- rotation: a global data analysis. Soil Sci. Soc. Am. J. 66, 1930-1946.

663 Selected soil physical and chemical properties at 0-10 cm depth at the three studied topographical positions of the KBS and Mason

664 experimental sites. Means of each soil property within each site followed by the same letters are not significantly different from each

other at (P<0.05). SOM: soil organic matter; CEC: cation exchange capacity; BpHΨ: buffered soil pH.

KBS	Sand	Clay	Silt	Bulk density	SOM	ВрНΨ	Р	CEC	K	Ca	Mg
Position		%		g cm ⁻³	%		ppm		cmol _c	kg⁻¹ soil	
Summit	57.82a	8.38b	33.81a	1.57a	1.93	6.78a	20.13a	5.83b	0.13b	3.08a	1.38
Slope	64.17a	14.72a	21.11b	1.52b	1.90	6.74a	16.94b	6.82a	0.17a	3.61a	1.71
Depression	56.71a	11.20a	32.10a	1.53b	2.18	6.76a	18.13a	5.87b	0.18a	2.88a	1.31
Mason											
Summit	63.62b	13.16a	23.22a	1.53b	1.81b	5.59b	22.5b	5.69b	0.29a	2.95a	0.99a
Slope	61.59b	14.24a	24.17a	1.50b	1.64b	6.13a	19.87b	7.33a	0.35a	4.05a	1.59a
Depression	67.83a	7.77b	24.40a	1.58a	2.24a	5.39b	71.25a	6.96a	0.51a	3.39a	0.91b

Effects of tillage systems on the average soil temperature and soil moisture contents across the
two studied seasons at the three studied contrasting topographical positions. The differences
between the two tillages were not statistically significant at each topographic position. Different
letters indicate statistically significant differences among topographic positions across both
tillages (p<0.05).

		Soil temper	cature (2012 & 20	Soil moisture (2012 & 2013)			
Topography	Tillage	No cover	Cover		No cover	Cover	
		° (%		
Depression	Chisel	22.43	22.08 a		18.88	19.47	a
	Ridge	22.66	22.41		21.71	20.44	
Slope	Chisel	25.87	25.71 c		14.99	15.13	b
	Ridge	24.39	24.69		15.31	17.64	
Summit	Chisel	23.87	24.10 b		16.32	16.79	b
	Ridge	23.28	23.95		18.62	18.56	

674 Effect of tillage systems on rye cover crop biomass. Different letters between chisel and ridge

675	tillages at slopes of KBS indicate significant difference at (P<0.05).	
-----	--	--

		KBS		Ma	ason
Topography	Tillage	2012	2013	2012	2013
		Kg		ha ⁻¹	
Depression	Chisel	58.28	91.91	242.14	164.81
	Ridge	94.44	118.34	236.72	135.83
Slope	Chisel	179.44a	142.56a	334.88	272.04
	Ridge	86.38b	95.07b	269.01	174.27
Summit	Chisel	118.28	129.22	605.57	223.00
	Ridge	169.58	167.25	467.16	236.70

Slopes from simple linear regression analysis between soil temperature and CO₂ emission at a) different topographical positions of the two studied sites during 2012 and 2013 growing seasons and b) at managements with and without cover crop across both sites and both studied years. #Regression slopes within the same site and the same year followed by different letters are significantly different from each other (p<0.05). ** and * indicate the linear regressions that were statistically significant at (P<0.05) and (P<0.1), respectively.

a)							
KBS							
	2012		2013				
	Slope		Slope				
Depression	4.95a ^{#**}		6.47**				
Slope	0.97b*		5.96**				
Summit	3.13a**		7.10**				
Mason							
Depression	5.99a**		7.74**				
Slope	1.90b*		5.18**				
Summit	3.17ab**		6.84**				
b)							
No cover		4.04a**					
Cover		5.70b**					

686 Slopes from the simple linear regression analysis between soil temperature and N₂O emission at

the two tillage systems of the two studied sites during 2012 and 2013 growing seasons.

[#]Regression slopes within the same site and the same year followed by different bold and regular

letters are significantly different from each other at p<0.05 and p<0.1 levels, respectively. **

690 indicate the linear regressions that were statistically significant at (P<0.05)

	KBS					
		2012	2013			
	Tillage	Slope	Slope			
	Chisel	0.002 a [#]	0.007			
	Ridge till	0.041 b**	-0.003			
		Mason				
	Chisel	0.014 a**	0.006a			
	Ridge till	0.035 b**	0.049b**			
692						
693						
694						
695						
696						
697						

Fig. 2. Aboveground biomass of rye cover crop at the two studied experimental sites in 2012 and
2013. Different letters show significant differences among topographic positions at (P<0.05) for
KBS and at (P<0.1) for Mason in 2012 cropping season. There were no statistically significant
differences among topographical positions in both sites in 2013. The bars of the columns indicate
standard errors of the mean.

Fig. 3. Effect of topographic position on emission of CO_2 (A) and N_2O (B) across the two studied experimental sites during 2012 and 2013 growing seasons. Different letters indicate presence of significant differences among topographic positions (p<0.05). The bars of the columns indicate standard errors of the mean.

712

713

positions across 2012 and 2013 growing seasons. At the two tillages different in CO_2 emission in depressions (marked by *) (P<0.1). The bars of the columns indicate standard errors of the mean.

Fig. 6. Variance of CO₂ emission data at the studied topographical positions. Variance in

depressions was significantly higher than that in slopes and summits in both sites of both years

731 (*p*<0.05).

732

